
Maxine-VM Documentation
Release 2.6.0

The Maxine Team of the University of Manchester

Dec 06, 2018

Contents

1 Project Overview 3

2 Citation 5

3 Getting Started 7

4 Features 9

5 Roadmap 11

6 Acknowledgements 13

7 Table of Contents 15
7.1 Status . 15
7.2 Build and Usage Instructions . 16
7.3 Developing Maxine on IDEs . 21
7.4 Debugging . 24
7.5 The Maxine Project: Frequently Asked Questions . 28
7.6 Glossary of Maxine terminology and concepts . 31
7.7 Actors . 36
7.8 JDK interoperation . 38
7.9 VM Boot Image . 41
7.10 Meta-circularity and memory management . 48
7.11 Maxine’s current Generational GC . 48
7.12 Maxine’s semi-space GC . 48
7.13 Next generation GC in Maxine . 48
7.14 Management of Code Dependencies . 49
7.15 Code Eviction in the Maxine VM . 51
7.16 Object representation in the Maxine VM . 53
7.17 Schemes: Interfaces for Maxine VM Configuration . 61
7.18 Snippets in the Maxine VM . 65
7.19 Stack Walking in the Maxine VM . 72
7.20 Threads in the Maxine VM . 76
7.21 Type-based Logging . 82
7.22 Virtual Machine Level Analysis . 87
7.23 VM Operations . 101
7.24 VMTI . 105

i

7.25 JVMTI . 106
7.26 JJVMTI . 106
7.27 The Maxine Inspector . 107
7.28 How the Inspector interacts with the Maxine VM . 160
7.29 Papers and Presentations . 168
7.30 The Maxine Project: Contributors . 170

8 Indices and tables 173

ii

Maxine-VM Documentation, Release 2.6.0

A next generation, highly productive platform for virtual machine research.

Contents 1

Maxine-VM Documentation, Release 2.6.0

2 Contents

CHAPTER 1

Project Overview

In this era of modern, managed languages we demand ever more from our virtual machines: better
performance, more scalability, and support for the latest new languages. Research and experimentation
is essential but challenging in the context of mature, complex, production VMs written in multiple
languages. The Maxine VM is a next generation platform that establishes a new standard of productivity
in this area of research. It is written entirely in Java, completely compatible with modern Java IDEs and
the standard JDK, features a modular architecture that permits alternate implementations of subsystems
such as GC and compilation to be plugged in, and is accompanied by a dedicated development tool (the
Maxine Inspector) for debugging and visualizing nearly every aspect of the VM’s runtime state.

As of the 2.0 release, September 2013, Maxine is no longer an active project at Oracle Labs. As of the 2.1
release, April 2017, Maxine VM is actively maintained and developed at the University of Manchester.

We believe that Maxine represents the state of the art in a research VM, and actively encourage
community involvement. The Maxine sources, including VM, Inspector, and other supporting tools,
are Open Source and are licensed under GPL version 2.0. To obtain the code please visit https:
//github.com/beehive-lab.

3

https://github.com/beehive-lab
https://github.com/beehive-lab

Maxine-VM Documentation, Release 2.6.0

4 Chapter 1. Project Overview

CHAPTER 2

Citation

For Maxine VM >= v2.1 please cite: Christos Kotselidis, et al. Heterogeneous Managed Runtime Sys-
tems: A Computer Vision Case Study. In 13th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE), 2017.

For the original Maxine VM please cite: C. Wimmer et al, “Maxine: An approachable virtual machine
for, and in, java”, In ACM TACO 2013.

To cite the software itself please use .

5

http://dl.acm.org/citation.cfm?id=3050764
http://dl.acm.org/citation.cfm?id=3050764
http://dl.acm.org/citation.cfm?id=3050764
http://dl.acm.org/citation.cfm?id=2400689&dl=ACM&coll=DL&CFID=748733895&CFTOKEN=73017278
http://dl.acm.org/citation.cfm?id=2400689&dl=ACM&coll=DL&CFID=748733895&CFTOKEN=73017278
https://zenodo.org/badge/latestdoi/86729772

Maxine-VM Documentation, Release 2.6.0

6 Chapter 2. Citation

CHAPTER 3

Getting Started

• Download and build Maxine from source on any of the supported Platform.

• Read the technical report “Maxine: An Approachable Virtual Machine For, and In, Java”

• Send any questions to this mailing list (maxinevm@googlegroups.com).

• Read about the current status of the VM.

• Learn more about the Maxine Inspector, the companion tool for visualizing internal state and
debugging the VM: video introduction, video demos, and written documentation.

• Learn more about Virtual Machine Level Analysis, an experimental extension for analysis the
behavior of application (and eventually the VM).

• View publications and presentations about Maxine.

• Read the Glossary and FAQ.

• Contact us on the the mailing list (or in private) and tell us about your work.

7

https://community.oracle.com/docs/DOC-917520
https://groups.google.com/forum/#!forum/maxinevm
mailto:maxinevm@googlegroups.com
https://groups.google.com/forum/#!forum/maxinevm
mailto:christos.kotselidis@manchester.ac.uk

Maxine-VM Documentation, Release 2.6.0

8 Chapter 3. Getting Started

CHAPTER 4

Features

Some of the features of Maxine that make it a compelling platform for (J)VM research include:

• Nearly all of the code base is written in Java and exploits advanced language features appearing
in JDK 5 and beyond: for example annotations, static imports, and generics.

• The VM integrates with openJDK. There’s no need to download (and build) other implementations
of the standard Java classes.

• The source code supports development in Eclipse, Netbeans or IntelliJ all of which provide ex-
cellent support for cross-referencing and browsing the code. It also means that refactoring can be
confidently employed to continuously improve the structure of the code.

• The Maxine Inspector produces visualizations of nearly every aspect of the VM runtime state, and
provides advanced, VM-specific debugging.

• The source code is hosted on GitHub making downloading and collaboration easier.

9

Maxine-VM Documentation, Release 2.6.0

10 Chapter 4. Features

CHAPTER 5

Roadmap

• Implement JVMCI, Upgrade to latest Graal

• Run Truffle on top of Maxine VM/Graal

• Port MMTk to Maxine VM

11

Maxine-VM Documentation, Release 2.6.0

12 Chapter 5. Roadmap

CHAPTER 6

Acknowledgements

This documentation is heavily based on the original wiki pages (by Oracle) that can be found here and
here.

13

https://web.archive.org/web/20150516045940/https://wikis.oracle.com/display/MaxineVM/Home
https://community.oracle.com/community/java/java_hotspot_virtual_machine/maxine-vm

Maxine-VM Documentation, Release 2.6.0

14 Chapter 6. Acknowledgements

CHAPTER 7

Table of Contents

7.1 Status

Maxine VM is being tested against the SPECjvm2008 and DaCapo-9.12-bach benchmark suites. The
following tables show the status of each benchmark on each supported platform.

7.1.1 SpecJVM2008

Benchmark ARMv7 AArch64 X86 C1X X86 C1X-Graal
startup PASS PASS PASS PASS
compiler PASS PASS PASS FAIL
compress PASS PASS PASS PASS
crypto PASS PASS PASS PASS
derby FAIL FAIL PASS FAIL
scimark PASS PASS PASS PASS
serial PASS PASS PASS
sunflow FAIL FAIL PASS FAIL
xml FAIL PASS PASS PASS
pass-rate 90% 92% 100% 55%

Note: The pass-rate is calculated based on the individual tests of each group, e.g., compiler contains 2
tests while serial only 1. As a result, groups have different weights.

15

https://www.spec.org/jvm2008/
http://dacapobench.org/

Maxine-VM Documentation, Release 2.6.0

7.1.2 DaCapo-9.12-bach

Benchmark ARMv7 AArch64 X86 C1X X86 C1X-Graal
avrora PASS PASS PASS PASS
batik FAIL FAIL FAIL FAIL
eclipse FAIL FAIL PASS FAIL
fop PASS PASS PASS PASS
h2 PASS PASS PASS PASS
jython PASS PASS PASS PASS
luindex PASS PASS PASS PASS
lusearch PASS PASS PASS PASS
pmd FAIL PASS PASS PASS
sunflow PASS PASS PASS PASS
tomcat FAIL PASS PASS PASS
tradebeans FAIL FAIL PASS PASS
tradesoap FAIL FAIL PASS PASS
xalan PASS PASS PASS PASS
pass-rate 62% 77% 100% 92%

Note: batik fails due to a library that is not available on openJDK, it is thus omitted from the pass-rate.

7.1.3 Issues

Any issues are reported in the issue tracker.

7.2 Build and Usage Instructions

7.2.1 Platform

Maxine is being developed and tested on the following configurations:

Architecture OS Java MaxineVM Version
X86 Ubuntu 16.04/18.04 OpenJDK 8 (u181) 2.6.0
Aarch64 Ubuntu 16.04/18.04 OpenJDK 8 (u181) 2.6.0
ARMv7 Ubuntu 16.04 OpenJDK 7 u151 2.4.0

MaxineVM - JDK version compatibility table

The table below shows the JDK version required to build each version of MaxineVM.

16 Chapter 7. Table of Contents

https://github.com/beehive-lab/Maxine-VM/issues

Maxine-VM Documentation, Release 2.6.0

MaxineVM Version Java Version
>= 2.5.1 Open JDK 8 u181
2.4.0 - 2.5.0 Open JDK 7 or 8 u151
2.2 - 2.3.0 Open JDK 7 or 8 u151
2.1.1 Open JDK 7 u131
2.0 - 2.1.0 Oracle JDK 7 u25
< 2.0 Oracle JDK 7 u6

To get OpenJDK 7 u151 in Ubuntu 16.04 on x86 you can use the following debian packages:

cd /tmp

export ARCH=amd64 # or arm64
export JAVA_VERSION=7u151-2.6.11-3 # or 8u151-b12-1
export JAVA=openjdk-7 # or openjdk-8
export FCONFIG_VERSION=2.12.3-0.2
export BASE_URL=http://snapshot.debian.org/archive/debian/20171124T100538Z

for package in jre jre-headless jdk dbg; do
wget ${BASE_URL}/pool/main/o/${JAVA}/${JAVA}-${package}_${JAVA_VERSION}_$
→˓{ARCH}.deb
done

for package in fontconfig-config libfontconfig1; do
wget ${BASE_URL}/pool/main/f/fontconfig/${package}_${FCONFIG_VERSION}_all.
→˓deb
done

wget http://ftp.uk.debian.org/debian/pool/main/libj/libjpeg-turbo/
→˓libjpeg62-turbo_1.5.1-2_${ARCH}.deb

sudo dpkg -i ${JAVA}-jdk_${JAVA_VERSION}_${ARCH}.deb ${JAVA}-jre_${JAVA_
→˓VERSION}_${ARCH}.deb ${JAVA}-jre-headless_${JAVA_VERSION}_${ARCH}.deb $
→˓{JAVA}-dbg_${JAVA_VERSION}_${ARCH}.deb libjpeg62-turbo_1.5.1-2_${ARCH}.
→˓deb fontconfig-config_${FCONFIG_VERSION}_all.deb libfontconfig1_$
→˓{FCONFIG_VERSION}_all.deb
sudo apt-get install -f

7.2.2 Building Maxine

7.2.3 Environment variables

To build maxine we first need to define a number of environment variables:

1. Define the directory you want to work in:

export WORKDIR=/path/to/workdir

2. Define the JDK to be used:

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

3. Define MAXINE_HOME:

7.2. Build and Usage Instructions 17

Maxine-VM Documentation, Release 2.6.0

export MAXINE_HOME=$WORKDIR/maxine

4. Optionally:

• Extend PATH to include the to be generated maxvm:

export PATH=$PATH:$MAXINE_HOME/com.oracle.max.vm.native/generated/
→˓linux/

• Define LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=$MAXINE_HOME/com.oracle.max.vm.native/
→˓generated/linux/

7.2.4 Dependencies

Maxine depends on the MX tool for its build process. To get it and add it to your PATH execute:

sudo apt-get install python2.7 # MX depends on python 2.7
mkdir -p $WORKDIR
cd $WORKDIR
git clone https://github.com/graalvm/mx
export PATH=$PATH:$(pwd)/mx

Maxine also depends on openJDK 8. To get it from the ubuntu repositories run:

sudo apt-get install openjdk-8-jdk

Maxine is open source software, licensed under the GPL version 2.0 and is hosted on GitHub. Since
Maxine is hosted in a git repository we need to install git as well:

sudo apt-get install git

Get the source code

1. Make sure the project directory exists and enter it:

mkdir -p $WORKDIR
cd $WORKDIR

2. Get the Maxine VM source code:

git clone https://github.com/beehive-lab/Maxine-VM.git maxine

This command will create a directory named maxine with the contents checked out from the git repos-
itory.

Updating your workspace with the latest changes

Later, when updates are available, you can use the standard git commands to request the changes:

18 Chapter 7. Table of Contents

https://github.com/graalvm/mx
https://github.com/beehive-lab/Maxine-VM

Maxine-VM Documentation, Release 2.6.0

git pull

Whenever you pull new changes into your working directory, it’s important to do a refresh. If you are
developing on the command line, then you should run mx clean before running mx build. If you are
developing in an IDE, then you need to perform the IDE-specific “refresh” action to inform it that the
underlying source files may have changed. For example, in Eclipse, this means selecting all the projects
in the Package Explorer view and performing a refresh File -> Refresh.

For more information on how to use Git, see the Git site.

Build

1. Enter the maxine source directory:

cd $MAXINE_HOME

2. Compile the source code:

mx build

Executing mx build in the $MAXINE_HOME directory compiles the Java source code of Maxine to
class files using javac (or the Eclipse batch compiler if you use the -jdt option) and compiles the
native code of Maxine to executable code using your platform’s C compiler.

The build process attempts to download some necessary files from the internet. If you are behind a
firewall set the HTTP_PROXY environment variable appropriately before starting the build.

1. Generate the boot image:

mx image

The mx image command is used to generate a boot image. This command runs Maxine on a host JVM
to configure a prototype, then compiles its own code and data to create an executable program for the
target platform.

Choice of Optimizing Compiler

Maxine provides two optimizing compilers, C1X and Graal. The former, an evolution of the Hostpot
client compiler, is very stable but no longer under development. Graal is more akin to the Hotspot
server compiler and is under active development and improvement. The default image build still uses
C1X as the optimizing compiler, but it is possible to select Graal, both for runtime compilations and for
compiling the VM boot image (the latter is currently unstable). To build a boot image with Graal as the
runtime optimizing compiler, use the following command:

mx image @c1xgraal

In this case the optimizing compiler is actually a hybrid of C1X and Graal, with C1X being used as
a fallback option if the Graal compilation fails. Note that the VM boot image is considerably larger
(~100MB) with Graal included.

To compile the boot image itself with Graal, do:

7.2. Build and Usage Instructions 19

https://git-scm.com/

Maxine-VM Documentation, Release 2.6.0

mx image @c1xgraal-boot

The Graal-compiled VM boot image will execute a few simple test programs but currently is not robust
enough to be the default.

7.2.5 Running

With the native substrate and a boot image built, the Maxine VM can now be executed.

The mx vm command handles the details of class and library paths and provides an interface similar to
the standard java launcher command.

The mx script includes a command to run a simple HelloWorld program to verify that the VM is working.

mx helloworld

Now let’s use Maxine to run a more substantial program.

mx vm -cp com.oracle.max.tests/bin test.output.GCTest2

To launch the VM (or any other command for that matter) without using mx, the -v option echoes the
commands issued by the mx script.

mx -v helloworld

7.2.6 Debugging

Please see Debugging.

7.2.7 Profiling

Various profiling tools are available for the Java platform, with varying degrees of overhead. Some tools
require VM support and the Maxine VM includes two such tools. The first is a simple sampling based
profiler with minimal overhead that is provided in the standard VM image and enabled by the -Xprof
command line option. The second tool is the Virtual Machine Level Analysis (VMA) system that works
by instrumenting compiled code. Using VMA requires a custom VM image to be built.

Sampling Profiler

Maxine includes a simple sampling-based profiler. It is enabled with the -Xprof command line option.
The full syntax for the option is -Xprof:frequency=f,depth=d,dump=s,flat=t,sort=t,
systhreads=t, where everything after the -Xprof is optional. The control arguments have the
following interpretation:

• frequency=f: Sets the frequency of the samples to f milliseconds. The default is 10.

• depth=d: Records the stacks of threads at sample points to a depth of d. The default is 16.

• dump=s: Dumps the accumulated stack traces every s seconds. The default is zero which results
in the traces being output only at VM termination.

20 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

• sort=t: Sorts the stack traces by thread and sample counts if t is true. The default value is true
unless dump is non-zero, as the sorting incurs both CPU and allocation overhead. In unsorted
mode the stack traces are output in an arbitrary order, each followed by the list of threads and
sample counts for that trace. In sorted mode, the traces for each thread are output separately, with
the traces ordered from highest to lowest sample count.

• flat=t: If t is true, the output is sorted and, for each sample, only the method at the top of the stack
is listed. Therefore, this option also implies depth=1. The default value is true.

• systhreads=t: Include system (VM) threads in the analysis if t is true. The default is false.

If the =t in the truth-valued options is omitted, it is the same as t=true.

The profiler is implemented as a separate thread that wakes up periodically, based on the given frequency
(slightly randomized), stops all threads and records their stack traces. Since threads only stop at safe-
points there is some inevitable inaccuracy in the reported trace. In particular, a hot method that contains
no loops will not appear in the output. However, the stack trace will likely show the closest caller that
contains a loop (or a system call that will cause the thread to reach a safepoint).

The data is output using the Maxine log mechanism, so can be captured in a file by setting the
MAXINE_LOG_FILE environment variable.

7.3 Developing Maxine on IDEs

7.3.1 Eclipse

Launch Configuration

Once you have installed Eclipse, we recommend modifying its launch configuration by editing the
eclipse.ini file in the Eclipse installation directory. In particular, you will want to give it more
memory with the following options:

-XX:MaxPermSize=512m
-Xmx1g
-Xms512m

On GNU/Linux the eclipse.ini file is located under /usr/lib/eclipse/.

On Mac OS X the eclipse.ini file is hidden inside the application bundle Eclipse.app, which shows
up as a single executable in the Finder. Open the bundle, either with the Finder Show Package Contents
contextual menu item, or with an editor such as Emacs. The file can be found at: Eclipse.app/
Contents/MacOS/eclipse.ini.

Configuring Eclipse

When first launching Eclipse for Maxine development, you should create a new workspace in the direc-
tory where you have checked out the Maxine sources.

You will then need to install the CDT plugin if you want to edit and build the Maxine C code from within
Eclipse. We also strongly recommend installing the Checkstyle plugin to simplify conforming with the
Maxine coding conventions.

Next, ensure that the default JRE being used for development is at least a JDK 7 installation. This will
be the case by default when Eclipse is running on JDK 7. Otherwise you will manually have to change

7.3. Developing Maxine on IDEs 21

Maxine-VM Documentation, Release 2.6.0

this setting in the Java > Installed JREs preference page. Once a JDK has been selected, you
should set some default VM options for it by selecting it and hitting the Edit... button. In the
Default VM Arguments field in the dialog that comes up, add the -ea option. Also add the -d64
option if you are on a platform (such as Linux or Solaris) where the JVM can be launched in either 32-bit
or 64-bit mode. Obviously this requirement will change should there ever be a 32-bit Maxine port.

Creating and Importing the Maxine Eclipse projects

Once Eclipse has been configured, you need to run a short mx command that will create the Eclipse
project configurations for all the projects in the Maxine workspace:

mx ideinit

The above command will actually create IDE project configurations for all supported IDEs (currently
Eclipse and NetBeans). To create only Eclipse project configurations, replace ideinit with eclipseinit.

You use the Import Wizard to import the created/updated projects.

1. From the main menu bar, select File > Import... to open the Import Wizard.

2. Select General > Existing Project into Workspace and click Next.

3. Choose Select root directory and click the associated Browse button to locate the top
level Maxine directory containing the projects.

4. Under Projects select all the projects.

5. Click Finish to complete the import.

Once the sources have finished importing, Eclipse will automatically compile them. It will also run
gmake to build the C code in the Native project. If the latter process appears to fail, the most common
cause is gmake not being on the PATH of the environment from which Eclipse was launched.

Note: Occasionally, a new Eclipse project is added to the Maxine source code. This usually results in an
Eclipse error message indicating that a project is missing another required Java project. To handle this,
you simply need to repeat the steps above for discovering and importing projects.

Building the boot image

Assuming all the sources compiled successfully, you can build the VM boot image by following the
instructions here.

To run the VM, open a console and use mx vm.

Cloning Git workspaces

Git makes it very easy to clone an existing workspace for the purpose of experimentation. Eclipse on
the other hand does not have a simple mechanism for copying settings from one Eclipse workspace to
another. We’ve found that the simplest thing to do is to copy the .metadata directory from an existing
Eclipse workspace to the workspace created by the git clone operation.

For example:

22 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

% ls
maxine
% git clone maxine sandbox
% cp -r maxine/.metadata sandbox/.metadata

Then select all the projects (in the Package Explorer view) and perform File > Refresh in Eclipse
for the cloned workspace.

7.3.2 Netbeans

Ensure that you select a JDK 7 during the installation process. The result of the installation process
is a directory named netbeans (hereafter referred to as $IDE_HOME). Note that on Mac OS X, the in-
stallation directory will be /Applications/NetBeans and the directory denoted by $IDE_HOME
in these instructions is /Applications/NetBeans/NetBeans<version>.app/Contents/
Resources/NetBeans.

Before starting NetBeans, it’s useful to tune its configuration by editing the $IDE_HOME/etc/
netbeans.conf file. In particular, the netbeans_default_options value can be modified
to increase the heap size of the JVM running NetBeans (e.g. add -J-Xmx1g to the value).

Generate the NetBean configuration files

The mx script can be used to generate NetBean project configurations for each project in the Maxine
code base. Simply run mx netbeansinit and follow the instructions it prints out to the console.

7.3.3 IntelliJ

Generate eclipse project files describing module dependencies

Executing the following command will create eclipse and netbeans project files describing the depen-
dencies between the different modules of Maxine. These project files will later be parsed by IntelliJ to
understand and import the module dependencies.

mx ideinit

Create a new IntelliJ project

Open IntelliJ and:

1. Select File > New Project.

2. Select the Create new Java project from existing sources option.

3. Use Maxine as the name of the project and for Project file location, select the directory
where you checked out the Maxine code. When you click Next, IntelliJ should find the source
directories automatically.

4. IntelliJ will not find any libraries for the project, click Next.

5. IntelliJ should infer correct modules for the project, click Next.

6. IntelliJ should not infer any facets for the project, click Finish.

7.3. Developing Maxine on IDEs 23

Maxine-VM Documentation, Release 2.6.0

Add JUnit4 library

You will need JUnit 4.0+ in order to compile Maxine. It is probably best not try to compile Maxine from
within IntelliJ before this step; its caches may become confused later, and it won’t work anyway.

1. Select File > Settings.

2. Select Project Settings.

3. Select Libraries.

4. Click the plus icon to add a new library.

5. Use the name JUnit4 for the library.

6. Apply the library to all the modules.

7. Click Add Classes and navigate to the location of your junit4.jar file.

8. Click OK.

More memory for Java Compiler

Maxine has some rather large source files, and javac will likely run out of memory. You need to increase
the amount of memory available to it by:

1. Select File > Settings.

2. Select Compiler.

3. Change the value for Maximum heap size to 1024.

7.4 Debugging

7.4.1 Inspector

The Inspector is the tool co-developed with the VM for debugging. Launching the Inspector is as simple
as using the mx inspect command.

mx inspect -cp com.oracle.max.tests/bin test.output.GCTest2

The Inspector window should appear in a few moments. Go here for other ways of launching the
Inspector.

7.4.2 Testing Maxine

Benchmarks

The most useful way to test Maxine is to execute some of the standard benchmarks on the image previ-
ously built with the mx image command. In this example, we will use the SpecJVM98 and DaCapo
benchmarks. After downloading the benchmarks, set the following environment variables:

export SPECJVM98_ZIP=/Users/acme/benchmarks/specjvm98.zip
export DACAPOBACH_JAR=/Users/acme/benchmarks/dacapo-9.12-bach.jar

24 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Then execute the following command:

mx test -insitu -tests=specjvm98,dacapobach

→˓-------------
Running reference SpecJVM98 _201_compress: 1607 ms
Running maxvm (std) SpecJVM98 _201_compress: 3309 ms
→˓ 2.059x

→˓-------------
...
Running reference DaCapo-bach avrora: 3960 ms
Running maxvm (std) DaCapo-bach avrora: 13815 ms
→˓ 3.488x

→˓-------------
...

Note that the harness used to run the benchmarks against a reference VM is a little brittle. In particular,
it compares the output written to stdout by the two executions and if they don’t match, it determines
the Maxine VM execution to have failed. We’ve noticed that for some benchmarks on some platforms,
the execution output is not such a reliable fingerprint. To see the actual output of the benchmark, and
the exact command used to run it, look in the maxine-tester/insitu directory.

Regression testing

Maxine includes a set of tests that are useful in catching regressions and measuring progress when
making changes. The three types of tests included in the distribution are described below.

JUnit tests

Tests the Maxine code base prior to building and running the VM. For example, there are JUnit tests for
the general purpose utility classes in the Base project. There are also JUnit tests that use the various IR
interpreters to ensure that each level of IR in Maxine’s compiler produces the correct output.

VM tests

These are tests that are executed on the VM. The first subcategory of VM tests are very simple unit
tests that test a specific VM feature and/or Java bytecode instruction in isolation (i.e. avoiding as many
other VM features as possible). To ensure strong isolation, these tests are built into the boot image and
executed in such a way that precludes using a more general testing framework such as JUnit. The second
subcategory of VM tests are called output tests. These tests are comprised of standard Java programs
(i.e. they have a class containing a main method) that produce some deterministic output via System.out.
These tests compare the output of these programs when run under Maxine VM and another trustworthy
JVM (such as HotSpot).

Cross-ISA tests

When porting Maxine VM’s compilers to a new Instruction Set Architecture QEMU is utilized to virtu-
ally run unit tests and regress the correctness of the generated code. To be able to run cross-ISA tests

7.4. Debugging 25

https://www.qemu.org/

Maxine-VM Documentation, Release 2.6.0

Maxine VM relies on the gcc linaro toolchain and qemu. Assuming an Ubuntu 16.04 LTS installation,
the following will install the required packages.

ARMv7

sudo apt-get install qemu-system-arm gcc-arm-none-eabi gdb-arm-none-eabi

Aarch64

Unfortunately for aarch64 the packages provided by ubuntu are not suitable. Qemu version is 2.5 while
we need 2.10 and gcc-aarch64-linux-gnu although available in the Ubuntu repositories it does
not include aarch64-linux-gnu-gdb, so we need to manually download both Qemu and the linaro
toolchain.

For qemu:

wget https://download.qemu.org/qemu-2.10.1.tar.bz2
bunzip2 qemu-2.10.1.tar.bz2
tar xvf qemu-2.10.1.tar
cd qemu-2.10.1
mkdir build
cd build
../configure --target-list=aarch64-linux-user,aarch64-softmmu
make -j
sudo make install

For gcc toolchain:

wget https://releases.linaro.org/components/toolchain/binaries/7.1-2017.08/
→˓aarch64-linux-gnu/gcc-linaro-7.1.1-2017.08-x86_64_aarch64-linux-gnu.tar.
→˓xz
tar xf gcc-linaro-7.1.1-2017.08-x86_64_aarch64-linux-gnu.tar.xz
export PATH=$PATH:$(pwd)/gcc-linaro-7.1.1-2017.08-x86_64_aarch64-linux-gnu/
→˓bin

RISC-V

QEMU:

git clone https://github.com/riscv/riscv-qemu
mkdir build
cd build
../configure --target-list=riscv32-softmmu,riscv64-softmmu,riscv32-linux-
→˓user,riscv64-linux-user --prefix=/opt/riscv
make -j
sudo make install
export
PATH=$PATH:/opt/riscv/bin

For the GCC toolchain please follow the instructions from https://github.com/riscv/riscv-gnu-toolchain

NOTE: When debugging RISC-V to make breakpoints work run the following in gdb

26 Chapter 7. Table of Contents

https://github.com/riscv/riscv-gnu-toolchain

Maxine-VM Documentation, Release 2.6.0

#set riscv use_compressed_breakpoint off

7.4.3 Logging and Tracing

Maxine provides two related mechanisms for logging and/or tracing the behavior of the VM, manual
string-based logging using the com.sun.max.vm.Log class, or more automated, type-based logging,
that is integrated with the Inspector, using com.sun.max.vm.log.VMLogger. These are related in
that VMLogger includes string based logging as an option and so can replace the use of Log. Currently
the VM uses a mixture of these two mechanisms, with conversion being done opportunistically. For
simplicity, we will use the term tracing to describe string-based logging in the following. If you are
adding logging to a VM component you are strongly encouraged to use the VMLogger approach.

Manual Tracing

Use the class com.sun.max.vm.Log to do manual tracing. The class includes a variety of methods
for printing objects of various types. By default the output goes to the standard output but can be re-
directed to a file by setting the environment variable MAXINE_LOG_FILE before running the VM. To
selectively enable specific tracing in the VM, define a com.sun.max.vm.VMOption with the name
-XX:+TraceXXX, where XXX identifies the tracing.

You should avoid string concatenation (or any other code involving allocation) in tracing code, especially
inside a VmOperation. While this should not break the VM (allocation will fail fast with an error
message if a VM operation does not allow it), allocation can add noise to your logs. Lastly, if the
logging sequence involves more than one logging statement, you should bound the sequence with this
pattern:

boolean lockDisabledSafepoints = Log.lock();
// multiple calls to Log.print...() methods
Log.unlock(lockDisabledSafepoints);

This will serialize logging performed by multiple threads. Of course, it will also serialize the execution
of the VM and may well make the race you are trying to debug disappear!

Native Code Tracing

Maxine provides some tracing of the small amount of native code that supports the VM. By default this is
conditionally compiled out of the VM image but can be selectively enabled by editing com.oracle.
max.vm.native/share/log.h and rebuilding with mx build and rebuilding the VM image.
This is particularly useful if the the VM crashes during startup. For example to enable all tracing set
log-ALL to 1.

Type-based Logging

In type-based logging, the actual values that you want to log are passed to an instance of the com.sun.
max.vm.log.VMLogger class using methods defined in the class. Evidently, at the VMLogger
level, type-based logging is something of a misnomer, as it cannot know the types of the actual values.
In practice the values are logged as untyped Word values, but extensive automated support is provided
to handle the conversion to/from Word types. The optional tracing support is driven from the values in
the log. For more details see Type-based Logging.

7.4. Debugging 27

Maxine-VM Documentation, Release 2.6.0

7.4.4 Debugging Maxine Java Tasks

The Maxine project includes a number of Java programs that can be launched as commands of the
mx script. For example, the mx image command described above runs the com.sun.max.vm.
prototype.BootImageGenerator class on a host JVM. This simplest way to debug such a com-
mand is to use the -d global option of the mx script. This will launch the Java program with extra
options telling it to wait and listen for a JDWP-capable debugger on port 8000. You then configure a
JDWP-enabled debugger to attach to this port.

The advantage of this approach is that you can easily launch the command with different command line
arguments without having to create/modify an IDE launch configuration.

7.4.5 Core dump

To get a core dump from a Maxine VM process, it is simplest to do gcore <pid> from another shell.
This forces a core dump but does not terminate the process, which continues after the dump is taken.
An alternative is to use kill -s ABRT <pid> which does kill the process after the dump is taken.
One other difference is that gcore allows the path to the core dump file to be specified with the -c
<corefile> option, whereas kill puts it in a default location, typically core in the current working
directory.

It is possible to force a core dump on a fatal VM error by setting the option -XX:+CoreOnError
when running the VM.

The following invocation:

mx inspect --mode=attach --target=file --location=dumpfile

will then bring up the Inspector on the core dump. If you omit the --location argument, it will put
up a dialog box.

Unfortunately this will only work if the associated Maxine VM was run with the
-XX:+MakeInspectable option, otherwise some key data structures needed by the Inspector
will not have been created.

7.5 The Maxine Project: Frequently Asked Questions

Here are some of the most frequently asked questions, along with answers that have been updated as the
project evolves. You might also want to browse the Maxine “Glossary”.

7.5.1 Does Maxine support the GNU classpath libraries?

No. Maxine is designed to run with openJDK.

7.5.2 How modular is the Maxine VM architecture?

Maxine provides abstractions for coarse-grained configurability of many VM subsystems, which we call
schemes. For example, the static and runtime compilers, garbage collector, reference representation,
object layout, monitor implementation, are all configurable with schemes.

28 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

7.5.3 What kind of GC does the Maxine VM use?

Currently Maxine employs a semi-space collector as the default. As with many other parts of the Maxine
architecture, garbage collection is abstracted as a separate scheme with limited interactions with other
schemes. We also aim to make the garbage collector scheme MMTK compatible.

7.5.4 How much optimization does the baseline compiler do?

Essentially none. See T1X compiler.

7.5.5 Does the Maxine VM use Green Threads?

No; Maxine does not use green threads. Maxine uses native threads and a state-of-the-art safepoint
mechanism for preemption. See Threads.

7.5.6 Can I use my favorite debugger?

No, instead we use the The Maxine Inspector for debugging and inspecting the VM while it is running.

7.5.7 What kind of development environment do I need to build and run the Max-
ine VM?

Maxine can be built and run from the command line, no special development environment is needed.

7.5.8 How does Maxine relate to the Project Maxwell Assembler System?

The Maxine distribution provides an advanced variant of the Project Maxwell Assembler System, now
called the Maxine Assembler System.

7.5.9 Are there other attempts to bootstrap the Java programming language?

Yes, some examples include Jikes RVM, Joeq, OVM, and Moxie. The design of Maxine has benefited
from these previous systems and enjoys the advantage of the new source language features in Java 5.0,
particularly annotations and generics.

7.5.10 Can I suspend and resume VM execution?

The simplest way to get application suspend/resume currently is to run Guest VM (Maxine on Xen).
Suspend/resume is built into the hypervisor support and “just works”. The Guest VM is server-side only
though, no GUI at this point.

7.5.11 Does the Maxine VM have an interpreter?

Maxine doesn’t do interpretation. It instead uses a very fast baseline compiler. See T1X compiler.

7.5. The Maxine Project: Frequently Asked Questions 29

Maxine-VM Documentation, Release 2.6.0

7.5.12 Why am I getting an error message about “hosted” being missing when
trying to build an image?

Exception in thread "main" java.lang.UnsatisfiedLinkError: no hosted in
→˓java.library.path

The native library named “hosted” is used during the boot image generation to get information on the
host platform. Very likely this has not been built for some reason.

First, be sure that you have a C development environment installed. Also ensure that the CDT plugin is
installed if you are using Eclipse.

Lastly, try rebuilding the native code:

mx build -clean com.oracle.max.vm.native

7.5.13 Why was the Grip abstraction from the original VM design removed?

Re: changeset 4423

The original rational for Grips was to provide an abstraction for object references that does not in-
volve write barriers. Apart from that, it was pretty much an exact mirror of the ReferenceScheme.
The thinking was that the GC should be written against grips as it does not need to update write
barriers. However, it turns out that object reference fix up is done via Pointers in the current
GC implementations and I don’t see why this won’t/can’t be true for any other GC. That is, we
had a whole extra (and confusing) abstraction whose whole reason for existence was not being
used! Additionally, even if references were being fixed up via Reference.setReference(...
) and Reference.writeReference(...) instead of Pointer.setReference(...) and
Pointer.writeReference(...) there is still no need for an extra abstraction. It would be far
simpler to annotate the method(s) doing the update with an annotation (e.g. @NO_BARRIERS) that
would instruct the compiler not to insert write barriers.

Of course, Maxine’s abstractions should support more than just write barriers for generational GCs.
Other interesting barriers include read barriers for concurrent GCs, read & write barriers for all data
types in an software transactional memory implementation, etc. I cannot say for certain that the support
for these is sufficient right now, but I’m confident they can be programmed without grips.

7.5.14 How does the Inspector process communicate with the inspected Maxine
VM process?

The VM is almost entirely passive with respect to the Inspector process. There is no internal agent; the
VM neither sends nor receives messages; in fact the VM barely knows that it is being inspected. Other
than process controls (thread management, start, stop, set breakpoints, etc.), the Inspector works mostly
by reading from VM memory. However, VM code is arranged in some places to make inspection easier,
and there are a few critical places where the VM does respond to information written into its memory
by the Inspector. See Inspector-VM Interaction.

7.5.15 What happened to the “primordial thread”?

Until February 2011 the original thread in a new Maxine VM process was known as the primordial
thread; its job was to execute the preliminary steps needed to bootstrap the VM and then wait until the

30 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Java VM exited. From February 2011 onward, the original process thread eventually becomes the main
thread, i.e. the thread on which the Java main thread runs. See Threads.

7.6 Glossary of Maxine terminology and concepts

Welcome to the Maxine Glossary, a very informal and evolving set of brief notes to help orient newcom-
ers to some of the terminology and concepts we use when talking about the Maxine VM. Please feel free
to write to us with comments and suggestions. It is definitely a work in progress.

You might also want to browse the Maxine FAQ.

We thank our collaborators who have been contributing documentation as well; we link to it from this
page and others whenever possible.

7.6.1 Alias

A specially marked field or method in a VM class that refers to a field or method in another class that
would otherwise be inaccessible due to Java language access control rules. Used mainly for VM access
to private members of JDK classes.

Read more.

7.6.2 Annotations

The Maxine VM code makes heavy use of Java Annotations as a form of language extension. These
extensions, which are recognized and treated specially by the Maxine compilers, permit the kind of
low-level, unsafe programming that is otherwise not possible with Java. By using the Java annotation
mechanism, which is a first class part of the language, the Maxine sources are completely compatible
with Java IDEs. See package com.sun.max.annotate.

Here are a few of the important Maxine annotations:

• @ALIAS: denotes a field or method as an alias, which can be used to access a field or method in
another class that would otherwise be inaccessible due to Java language access control rules.

• @BUILTIN: denotes a method whose calls are translated directly by the compiler into machine
code.

• @C_FUNCTION: denotes a native function for which a lightweight JNI stub should be generated.

• @CONSTANT_WHEN_NOT_ZERO: denotes a field whose value is final once it is non-zero.

• @CONSTANT: denotes a field whose value is final before it’s first read (i.e. a stationary field).

• @FOLD: calls to these methods are evaluated (as opposed to translated) at compile time.

• @INLINE: forced inlining.

• @INSPECTED: used by an offline tool to generate field and method accessors for the Maxine
Inspector.

• @METHOD_SUBSTITUTIONS: denotes a class containing. MethodSubstitutions

• @NEVER_INLINE: denotes a method that this compiler must never inline.

• @SUBSTITUTE: denotes a MethodSubstitution.

7.6. Glossary of Maxine terminology and concepts 31

https://groups.google.com/forum/#!forum/maxinevm

Maxine-VM Documentation, Release 2.6.0

• @UNSAFE: marks a method that requires special compilation; some other annotations imply
@UNSAFE.

7.6.3 Boot heap

An object heap embedded in the VM boot image. It is a normal heap, with the exception that objects
in it never move (although they may become permanent garbage). As the name implies, the objects in
this heap are those allocated during boot image generation. The boot image is really just this heap plus
a little meta-data in front.

Read more.

7.6.4 Bootstrap

The process of loading and executing a boot image of Maxine, up to the point where the VM is ready,
either to execute a specified application class or other action specified by the run scheme.

Currently a boot image of Maxine is not a native executable but just a binary blob containing machine
code and data for a dedicated target platform. Thus a boot image is not executable by itself. To start it a
very small native C application is required.

See Boot Image.

7.6.5 Graal Compiler

See Graal.

7.6.6 Immortal memory

See the ImmortalHeap class as well as the various ImmortalHeap_* classes that test this func-
tionality.

See class com.sun.max.vm.heap.ImmortalHeap

7.6.7 Injected fields

During startup the VM synthesizes and injects additional fields into core JDK classes. Injected fields
typically link instances of JDK objects to their internal VM representation. Read more.

7.6.8 Maxine packages

A mechanism for treating groups of classes in Java package as a de facto “module” for purposes of
system configuration and evolution. This requires implementing more functionality than is provided by
the Java language via java.lang.Package.

This main application of this mechanism is to define the classes to be including during Maxine boot
image generation, and in particular to specify which implementations to bind to VM schemes.

32 Chapter 7. Table of Contents

https://github.com/graalvm/graal-core

Maxine-VM Documentation, Release 2.6.0

Strictly speaking, a Maxine package is a collection of classes in a Java package that includes
a class named Package. The class Package must extend class com.sun.max.config.
BootImagePackage in order to be considered for inclusion in the VM. The Package class, other
than acting as a marker, may contain additional specifications directed at the Maxine package system. In
many cases, however, trivial Package class can be synthesized dynamically and need not be explicitly
defined.

7.6.9 Metacircular VM

In a conventional VM implementation (left in the figure below) there is a language barrier between
the language being implemented (Java in the figure) and the implementation language (C++). No such
barrier exists in Maxine, where the VM is itself implemented in the language being implemented.

See also: Ungar, D., Spitz, A., and Ausch, A. 2005. Constructing a metacircular Virtual machine in
an exploratory programming environment. In Companion To the 20th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications (San Diego, CA, USA,
October 16 - 20, 2005). OOPSLA ‘05. ACM, New York, NY, 11-20. DOI

7.6.10 package-info.java

A documentation class, following Javadoc convention, for the classes and interfaces in a Java package;
this is especially encouraged for packages that constitute Maxine package and serve as modules for VM
configuration.

7.6.11 Package.java

A class used for configuration purposes by the Maxine Package mechanism.

7.6.12 ReferenceMapInterpreter

The ReferenceMapInterpreter performs an iterative data flow analysis via abstract interpretation. The
following option maybe useful to watch it in action:

7.6. Glossary of Maxine terminology and concepts 33

http://doi.acm.org/10.1145/1094855.1094865

Maxine-VM Documentation, Release 2.6.0

-XX:TraceRefMapInterpretationOf=<value>

The help message for this option is: “Trace ref map interpretation of methods whose name or declaring
class contains .”

A short summary of its operation follows, contributed by Arian Treffer.

• To collect GC roots, the GC needs to know which variable and stack slots in a stack frame contain
references.

• For the beginning of each code block, a bitmap (called “frame”) that indicates used reference slots
is cached.

• A block is a sequence of byte codes in a method that can be executed without jumping (out or
into). A block either ends with a (implicit) fall through, a jump, or a return.

• To create frames, the blocks are pseudo interpreted: their pop and push behavior is simulated. The
slot configuration at the end of a block is the frame for all blocks that can be reached from here (2
in case of a conditional jump, 0 in case of a return, otherwise 1).

• When a block can be reached from multiple other blocks, its frame is the intersection of the final
slot configuration of its predecessors. If one predecessor stored a reference in a slot, and another
did not, the current block may not read this slot, for it doesn’t know its contents.

• The stack size at the beginning of a block is always the same. There is no Java code that first
pushes N items (i.e. in a loop), and later pops them, even though this could be expressed with byte
codes.

• To get the slot configuration at the current execution point, the current block is interpreted again
up until the current byte code, where the slot configuration is converted into a bitmap that indicates
references on the current stack frame.

7.6.13 Stop positions

A list of call and safepoint instructions within a target method. These locations correspond to all possible
addresses the instruction pointer of a frame may have when its thread is stopped at a safepoint. The
location of all references on the stack are precisely known when at a stop position. See Threads.

7.6.14 T1X compiler

T1X is a template-based baseline compiler and is Maxine’s first line of execution (Maxine has no inter-
preter). As such, it’s primary goal is to produce code as fast as possible. Code quality is of secondary
concern. It also closely matches the JVM specification’s execution models. That is, the JVM operand
stack and local variable variable array is modeled directly. This makes it suitable for implementing
bytecode level debugging as well being the execution mode the de-optimization process uses as its end
target.

The templates for each bytecode instruction are written in Java (see T1XTemplateSource) and com-
piled to machine code by C1X (which is to be replaced by Graal). These machine code snippets are
stored in a table and used to translate bytecodes at T1X compile time. The translation is done in a single
pass (see T1XCompilation) and GC maps are lazily generated via an abstract interpreter at GC time.
The latter strategy pays off as a GC map is only generated for a T1X compiled method if it is currently
active during GC root scanning. Another strategy to improve compile time is to minimize allocation
during compilation. This is achieved by (re)using thread local data structures for each compilation.

34 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Having the templates written in Java makes modifying or extending the compiler fairly easy. More
importantly, it also means the compiler is very portable and it mostly relies on the optimizing compiler.
It performs very little direct machine code generation.

The source code for T1X is entirely contained in the top level T1X directory of the Maxine source code
base.

7.6.15 Target method

A target method in the Maxine VM is the entity that contains some machine code produced by one
of the compilers in Maxine. It also contains all the other data required by the VM for some ma-
chine code. In particular, target methods (implemented by heap objects in the class hierarchy rooted
at TargetMethod.java) encapsulate the following information, including some that resides not in
the heap but in the region of code cache memory allocated for the compilation.

• Machine code, represented as a reference to a byte[] that is stored in the method’s code cache
allocation.

• Reference literals (optional, but common): represented as a reference to an Object[] that is
stored in the method’s code cache allocation.

• Scalar literals (optional, much less common): represented as a reference to a byte[] that is
stored in the method’s code cache allocation.

• Exception handler information. This is a data structure that can be used to answer the question
“for an exception of type t thrown at position n in the target method, what is the position, if any,
of an exception handler in the target method that will handle the thrown exception?”.

• The stop positions. A stop is a machine code position for which extra information is known about
the execution state at that position. There types of stop positions in Maxine and the information
recorded for them are shown below:

– Call. This is the position of a call (direct or indirect) instruction. For a call, the following is
recorded:

* Frame reference map. This is a bit map with one bit per slot in the frame of the method.
A set bit in this bit map indicates that the corresponding frame slot holds an object
reference at the call.

* Java frame descriptor. This is a map from locations in the bytecode-level frame state
to locations in the machine state. The bytecode level frame state is composed of the
local variables and operand stack slots addressed by the JVM bytecodes from which the
machine code was produced. The machine state is composed of frame slots, registers
and immediate instruction operands. The mapping enables the JVM state to be com-
pletely reconstructed at the stop position. This is useful for implementing source level
debugging and deoptimization.

– Safepoint. This is the position of a safepoint instruction. For a safepoint, all the information
described for a call is recorded as well as:

* Register reference map. This is a bit map with one bit per register that can be used to
store an object reference. This includes the complete set of general purpose registers for
the platform but exclude all the floating point and state registers. Like a frame reference
map, a set bit in the register reference map indicates that the corresponding register is
holding an object reference at the safepoint.

7.6. Glossary of Maxine terminology and concepts 35

Maxine-VM Documentation, Release 2.6.0

[STRIKEOUT:Currently register reference maps are not recorded for calls as all registers are caller saved
by the compilers in Maxine. This will mostly likely change in the near future as C1X will implement
callee-save registers when compiling certain methods.] (Out of date?)

See abstract com.sun.max.vm.compiler.target.TargetMethod

7.6.16 Trampoline

The mechanism used to defer binding a call site to a target method. When compiling a call, an address
is needed for the machine level call instruction. One option is to eagerly resolve the callee during
compilation of the call but this will end up compiling the world! Instead, a piece of code is called that
knows how to find and compile (if necessary) the intended target method and redirect the call there. For
static calls, the call site itself is patched so that subsequent calls go straight to the resolved method. For
virtual calls, the trampoline patches the entry in the relevant dispatch table.

7.7 Actors

An actor is an object that represents a Java language entity (e.g. a Class, Method, or Field) in the VM
and implements the entity’s runtime behavior. All Maxine actors are instances of classes that extend
abstract class com.sun.max.vm.actor.Actor.

Maxine actors can be viewed as enhanced reflection classes (i.e. classes such as java.lang.
reflect.Method and java.lang.Class). Java reflection classes by design hide implementation
details specific to any VM (including in most cases information about the underlying class file). Maxine
actors, on the other hand, exist precisely to implement those internal details specifically for the Maxine
VM.

7.7.1 Actors and their JDK counterparts

The implementation of Maxine actors and their JDK java.lang.reflect counterparts are typically
intertwined. Since the Maxine VM is designed to operate with a standard, unmodified JDK, modifica-
tions must be made dynamically to some JDK classes at VM startup so that the two can be coordinated.

Three techniques make this possible:

1. Aliases: direct, non-reflective access to JDK fields and methods, even when prohibited by stan-
dard Java access rules;

2. Field injection: adding a field to a JDK class, for example a pointer from an instance of java.
lang.reflect.Class to its corresponding ClassActor; and

3. Method substitution: replacement of a JDK method.

See JDK interoperation for details and examples.

7.7.2 Flags

The abstract class Actor contains exactly one field, a word used as a bit field, along with a number of
accessor methods for those values. These provide efficient and flexible access to properties of interest
for all actors.

36 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Many of the flags correspond to properties defined by the Java language, for example the presence of
keywords such as public, private, and final. These are documented at the head of the the file and are
cross-referenced to the Java Language Specification. Other flags are used strictly for internal implemen-
tation.

7.7.3 The Actor types

This section mentions a few members of the Actor type hierarchy; the actual type hierarchy is a bit
more complex.

ClassActor

A ClassActor represents many of the implementation details for a Java class. For example, it includes
a reference to the corresponding instance of java.lang.Class, which in turn contains an injected
field reference that points back at the ClassActor.

A ClassActor also holds references to the class’s methods (instances of MethodActor),
fields(instances of FieldActor), its superclass, its static and dynamic hubs, and more.

ClassActor is abstract, with three subclasses:

1, InterfaceActor represents Java interfaces.

1. PrimitiveClassActor represents primitive Java types, as described by KindEnum (corre-
sponding to the primitive Java types plus some created only for VM internal use).

2. ReferenceClassActor represents non-primitive Java types using three concrete subclasses:

(a) ArrayClassActor<Value_Type> represents Java arrays;

(b) TupleClassActor represents ordinary Java objects;

(c) HybridClassActor represents a kind of object that cannot be expressed in Java: a com-
bination of array plus fields that is used internally to represents Maxine hubs.

An ordinary object instance in the VM’s heap contains a header that, among other things, identifies the
object’s type. This field points not at the ClassActor for the object’s type, but rather at the dynamic
hub for the class. In the case of the exceptional object that holds the static fields of a class (the static
tuple), the header points to the static hub for the class.

FieldActor

A FieldActor contains the implementation details for a field in a Java class. Such details include
a reference to the representation of the field’s type and to its holder: the instance of ClassActor
representing the implementation of the class to which the field belongs.

A subclass of FieldActor, InjectedReferenceFieldActor, represents a synthesized field
that has been added dynamically to a JDK class.

See field injection for details and examples.

7.7. Actors 37

Maxine-VM Documentation, Release 2.6.0

MethodActor

A MethodActor contains the implementation details for a method in a Java class. Such details include
a reference to the representation of the method’s signature, to it’s holder (the instance of ClassActor
representing the implementation of the class to which the method belongs), and to zero or more possible
compilations of the method.

The MethodActor class is itself abstract, with concrete subclasses defined to implement various fla-
vors of implementation: static methods, virtual methods, interface methods, and so-called miranda
methods.

7.8 JDK interoperation

The Maxine VM is designed to work with a standard, unmodified JDK, which requires special machin-
ery for dealing dynamically with important JDK classes. This machinery is implemented by compiler
extensions, configured by annotations.

JDK classes in the JDK can be modified during VM bootstrapping, both by adding fields and by replac-
ing methods.

7.8.1 Aliases

Aliases give the VM access to otherwise inaccessible fields and methods. Java’s access rules for class
members can be bypassed using reflection, but at the cost of boxing/unboxing and the absence of static
type checking. The Maxine VM avoids these costs with the annotation @ALIAS. This causes an an-
notated field or method to act as an alias for a field or method in another class, giving straightforward,
statically type-checked access.

For example, the name field in class com.sun.max.vm.jdk.JDK_java_lang_Thread pro-
vides read/write access to the private field name in class java.lang.Thread.

@ALIAS(declaringClass = java.lang.Thread.class)
char[] name;

In case the declaringClass is private declaringClassName can be used instead.

@ALIAS(declaringClassName = "java.lang.reflect.Proxy$ProxyClassFactory")
public final static String proxyClassNamePrefix = "$Proxy";

Additionally in case the type of the object itself is private, the descriptor parameter can be used.

@ALIAS(declaringClass = Proxy.class, descriptor="Ljava/lang/reflect/
→˓WeakCache;")
private static Object proxyClassCache = null;

Inner classes are also supported through the innerClass parameter.

@ALIAS(declaringClass = ClassLoader.class, innerClass = "NativeLibrary")
private long handle;

For more discussion and an example of method aliasing, see the Javadoc comments for the annotation
com.sun.max.annotate.@ALIAS.

38 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Aliasing is often used together with method substitution, so that a method substituted into a different
class will have access to otherwise inaccessible members of that different class. See below an example
of how this is done.

7.8.2 Method substitution

During startup the Maxine VM replaces specified methods in specified JDK classes. How this is
configured is best described by the following example, in which the method java.lang.Class.
isAssignableFrom() gets replaced (along with others). The following figure depicts the result of
the substitution.

1. Create a Maxine VM class for holding all methods to be substituted into java.lang.Class.
By convention, this class is named JDK_java_lang_Class (in package com.sun.max.
vm.jdk).

2. Annotate this class with @METHOD_SUBSTITUTIONS, which identifies
the target of the substitutions as follows:

@METHOD_SUBSTITUTIONS(java.lang.Class.class)

3. Create a method in class JDK_java_lang_Class with signature identical to the method to
be substituted, in this case isAssignableFrom(). The body of this method does what is
actually needed during execution of the Maxine VM. This often entails delegating part of all of
the operation to a VM object that is the Maxine runtime implementation of the JDK object, in this
case an instance class com.sun.max.vm.actor.holder.ClassActor.

4. Annotate the newly created method with @SUBSTITUTE: which marks
the method for substitution.

Substituted methods don’t necessarily have access to fields and methods of the class into which
they are substituted, but language access rules can be defeated by creating aliases for those fields
and methods as needed. For example, the method setName() in class com.sun.max.vm.
jdk.JDK_java_lang_Thread assigns the name of a thread, both in the VM’s representation (a
VmThread) and in the JDK’s instance of class java.lang.Thread via assignment to a field alias.

@ALIAS(declaringClass = Thread.class)
char[] name;

(continues on next page)

7.8. JDK interoperation 39

Maxine-VM Documentation, Release 2.6.0

(continued from previous page)

...

/**
* Sets the name of the the thread, also updating the name in the
→˓corresponding VmThread.

* @param name new name for thread

*/
@SUBSTITUTE
private void setName(String name) {

thisThread().checkAccess();
if (thisVMThread() != null) {

thisVMThread().setName(name); // Set name in the VM's thread
→˓object

}
this.name = name.toCharArray(); // Set name in the JDK's thread

→˓object
}

Note that when substituting a constructor, the new constructor no longer invokes the original initializers
(if any) of the corresponding class, so one needs to do this explicitly.

@SUBSTITUTE(constructor = true, signatureDescriptor = "(Ljava/lang/invoke/
→˓LambdaForm;ILjava/lang/String;Ljava/lang/String;Ljava/lang/invoke/
→˓MethodType;)V")
private void InvokerBytecodeGenerator(Object lambdaForm, int localsMapSize,

String className, String invokerName,
→˓ MethodType invokerType) {

if (invokerName.contains(".")) {
int p = invokerName.indexOf(".");
className = invokerName.substring(0, p);
invokerName = invokerName.substring(p + 1);

}
className = maxMakeDumpableClassName(className);
this.className = superName + "$" + className;
this.sourceFile = "LambdaForm$" + className;
this.lambdaForm = lambdaForm;
this.invokerName = invokerName;
this.invokerType = invokerType;
this.localsMap = new int[localsMapSize];

// When substituting a constructor the initializers of the original
→˓class are no longer invoked, thus we need

// to initialize cpPatches explicitly here
cpPatches = new HashMap<>();

}

7.8.3 Field injection

During startup the VM synthesizes and injects additional fields into core JDK classes. Injected fields
typically link instances of JDK objects to their internal VM representation. For example, the VM injects
into class java.lang.Class a reference to each class’s internal VM representation: an instance of
class com.sun.max.vm.actor.holder.ClassActor. The following figure depicts the result
of the injection.

40 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

A field injection is defined by creating an instance of class com.sun.max.vm.actor.member.
InjectedFieldActor.

For example, the following code (which creates a static variable in class com.sun.max.vm.actor.
member.InjectedFieldActor), causes the VM to inject the ClassActor reference field into
class java.lang.Class, as shown in the above figure.

/**
* A field of type {@link ClassActor} injected into {@link Class}.

*/
public static final InjectedReferenceFieldActor<ClassActor> Class_
→˓classActor = new InjectedReferenceFieldActor<ClassActor>(Class.class,
→˓ClassActor.class) {

@HOSTED_ONLY
@Override
public ReferenceValue readInjectedValue(Object object) {

final Class javaClass = (Class) object;
return ReferenceValue.from(ClassActor.fromJava(javaClass));

}
};

7.9 VM Boot Image

Starting an instance of the Maxine VM requires the use of a previously constructed boot image, a near-
executable binary VM image that includes an initially populated heap, together with compiled code for
a dedicated target platform.

7.9. VM Boot Image 41

Maxine-VM Documentation, Release 2.6.0

7.9.1 Boot image contents

The boot image is a binary file that contains a near-executable memory image of the running VM in the
format of the target platform for which the image was generated. The target platform is not required to
be the same as the platform on which the boot image generation is run (i.e. hosted).

The utility class BootImage is responsible for writing the boot image file in the format of the target
platform. This data must be read by native C code during VM startup, so there is necessary agreement
between the layout as expressed in the Java class BootImage and in the native startup code.

Below you can see the boot image layout summarized as a pseudo-C struct. This diagram is excerpted
from the Javadoc comments for class BootImage.

struct BootImage {
struct Header header; // see declaration of image_Header

→˓in Native/substrate/image.h
struct StringInfo string_info; // see declaration of image_

→˓StringInfo in Native/substrate/image.h
byte[header.relocationDataSize] relocation_data;
byte[] pad; // padding such that next field will

→˓be aligned on an OS page-size address
byte[header.heapSize]; // header.heapSize is a multiple of

→˓page-size
byte[header.codeSize]; // header.codeSize is a multiple of

→˓page-size
struct Trailer trailer; // see declaration of image_Trailer

→˓in Native/substrate/image.h
}

The boot image contains the following groups of information:

• header: a sequence of integer parameters that identify the binary, describe the target platform,
and include specific data about the remaining contents of the image.

• string info: a sequence of strings in native format that describe the build, name the classes that
provide detailed platform description, and name the packages that are bound to the schemes in the
build.

• relocation data: a bit field that identifies address locations in the image that need to be relocated.

• boot heap: binary image of a heap in target platform format, pre-populated with the objects that
represent class and other runtime data needed by the VM until it can begin loading classes on its
own.

• boot code: binary image of method compilations in target platform format, pre-populated with
the compilations needed by the VM until it can begin compiling methods on its own.

• trailer: a subset of the integer parameters that also appear in the header, repeated for verification.

7.9.2 Inspecting the boot image

The Boot Image Inspector view in the Maxine Inspector displays summary information about the specific
boot image being viewed: identifying parameters, configuration classes for various schemes, memory
region information about the boot heap and boot code, and other specific references into the heap and
compiled code.

42 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

7.9. VM Boot Image 43

Maxine-VM Documentation, Release 2.6.0

7.9.3 BOOT image generation

Maxine’s boot image generator creates a boot image according to a specification (see com.sun.max.
vm.VMConfiguration) that both specifies which implementations of particular Schemes should be
included and describes the platform on which the image is intended to run.

Class loading and initialization

Any class that might be written into the boot image must first be loaded by the boot image generator.
Loading can happen in two ways. First any class that is used by the classes that comprise the boot image
generator is loaded by the normal host class loading mechanisms, that is using the system class loader.
Note that the boot image generator uses many of the same classes as the VM. Second, the generator
explicitly loads classes that might be written into the boot image by scanning the class path and search-
ing for sub-packages of com.sun.max.config that contains a class named Package that is a subclass of
com.sun.max.config.BootImagePackage. The Package classes act as roots for the set of packages to be
included in the boot image. BootImagePackage provides a mechanism for including packages that are
outside the com.sun.max namespace. See below for details. This second set of classes is actually loaded
by a special class loader, com.sun.max.vm.hosted.HostedVMClassLoader, that performs additional ac-
tions, such as creating the Maxine representation of classes used at runtime. HostedVMClassLoader
delegates to the system or boot classloader, as appropriate, so a class is only loaded and initialized once,
even if it was initially loaded implicitly by the boot image generator.

As noted, Loaded classes are initialized, which means that static class variables in the boot image have
values assigned during image generation. Mostly this is perfectly fine, for example, an instance of a col-
lection class. The problem arises with classes that capture values that are host-specific and inappropriate
for the target VM environment. Typically this is any value related to the external environment, which
includes the operating system and host virtual machine. An example of the latter would be any object
that contains a VM-specific native value, for example a soft reference. The boot image generator takes
care of all the known cases in the JDK classes, and this is handled in the class com.sun.max.vm.
hosted.JDKInterceptor. Extension classes can register a class to have the class initialization
re-run at run-time. Except for such classes, no code is generated in the boot image for static initializa-
tion.

Class and method selection

Intuitively, the boot image is intended to contain all the classes and methods that are needed to bootstrap
the VM to the point where it can dynamically load further classes from the file system and compile
methods for execution. In order to minimize the size of the boot image, only those classes should be
included. In practice this set is not easy to define precisely and depends, amongst other things, on the
details of the JDK implementation. In particular, it can vary from release to release of the JDK.

The Maxine boot image generator determines the content of the boot image by starting from so-called
entry points plus a subset of the standard platform classes that are known to be necessary for the boot-
strap. An entry point is a method that:

• can be called from the external environment (e.g. those annotated with @VM_ENTRY_POINT),

• is called by pre-compiled/generated code such as stubs,

• is a reflection invocation stub for methods called during class loading or compilation,

• is manually selected to satisfy bootstrap requirements (and avoid infinite recursion at runtime), or

44 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

• is manually selected to improve startup time at runtime.

These entry points form the basis of the analysis used to discover the methods needed to bootstrap the
VM. An example is the run method in com.sun.max.vm.MaxineVM, which is the entry point from
the native C code that starts the VM bootstrap. Another mechanism for specifying an entry point is the
com.sun.max.vm.runtime.CriticalMethod class.

7.9.4 Extending the boot image

Maxine supports both static and dynamic extension of the VM boot image. Static extension adds extra
classes to the boot image generation process. Dynamic extension is supported using a similar mechanism
to that for Java agents,

7.9.5 Static Extension

Static extension provides the opportunity to customize the set of classes to be included in an image. For
example, if you need to extend the VM in a way that requires some of the extension classes to execute
before the VM is ready to load new classes, then those additional classes must be included in the boot
image.

It is possible to augment the boot image with much larger set of classes, in the limit, every class needed
by an application. Such an image would be self contained and require no dynamic class loading at run-
time. In certain cases this might be desirable; however, there are issues regarding class initialization that
may need to be addressed.

Class re-initialization

As noted above, static class variables in the boot image will have values assigned during boot image
generation unless handled specially by the com.sun.max.vm.hosted.JDKInterceptor class.
It is your responsibility to check any extension classes you are adding.

Specifying additional classes or packages

The simplest way to do this for a one-time image build is to suffix the class names or packages to the
max image command:

% mx help image
mx image [options] classes|packages...

build a boot image

Run the BootImageGenerator to build a Maxine boot image. The classes
and packages specified on the command line will be included in the
boot image in addition to those found by the Package.java mechanism.
Package names are differentiated from class names by being prefixed
with '^'.

...

For example, to add all the classes in the package acme.demo as well as the single class foo.Bar:

7.9. VM Boot Image 45

Maxine-VM Documentation, Release 2.6.0

% mx image ^acme.demo foo.Bar

Note that packages are not processed recursively, that is, nested packages are not included unless explic-
itly specified. Note also that the above command assumes that the classes are located within one of the
Maxine directories. If this is not the case, their location must be specified with the --cp-sfx option.
In addition, methods in the extension classes will only be compiled if they meet the conditions outlined
above in Class and method selection. Finally, protection issues may require your classes to be defined
in a Maxine package if your extension classes need package-private access to any Maxine classes. For
more permanent additions to the boot image, or to meet access requirements, the easiest approach is
to put your classes in in a sub-package of com.sun.max in one of the existing Maxine projects, and
leverage the automatic loading mechanisms described in the earlier section Class loading and initializa-
tion. While this approach might be acceptable for short-term prototyping, it is inappropriate in the long
term unless the code is blessed as a standard VM component.

If you place your classes in a sub-package of com.sun.max, whether in an existing project or not, there
is one caveat:

• If your classes are not in an existing Maxine directory, be sure to use the --cp-sfx option to
add the directories to end of the classpath. If you add them at the front (with --cp-pfx), you
may well break the mechanism by which the hosted native library is found.

The recommended approach for extending Maxine is to place the extension packages in a separate
project. To satisfy the discovery mechanism of the boot image generator, all extension packages must be
rooted in a sub-package of com.sun.max.config, for example, com.sun.max.config.acme.
However, it is possible to redirect to packages outside the com.sun.max namespace. An extension
package to be included in Maxine should contain a Package class that extends BootImagePackage.
BootImagePackage provides four constructors:

1. BootImagePackage(): the default constructor is used to include just those classes in the
package containing the Package class.

2. BootImagePackage(boolean): this constructor, with a value of true is used to include
the classes in the package containing the Package class and all sub-packages, recursively. In
particular, there is no need for Package classes in the sub-packages.

3. BootImagePackage(String, boolean): this redirection constructor includes the
classes in the package passed as argument. Sub-packages are only included if the boolean ar-
gument is true.

4. BootImagePackage(String...): this constructor serves two purposes. First to include
(redirected) packages outside the com.sun.max namespace and, second, to restrict the set of
classes that are loaded from a given package. The interpretation of the argument is based on
the following patterns:

• a.b.c.*: include all classes from the package a.b.c.

• a.b.c.**: include all class from the package a.b.c and its sub-packages, recursively.

• a.b.c.D: include the class a.b.c.D.

Note that, by design, there is no way to exclude a class from a package, other than by explicitly enumer-
ating all the classes except the one to exclude.

It is legal for a package to be referenced multiple times by different Package constructors. For example,
two separate constructors might specify different classes to be included. The final specification is the
result of merging the specifications.

46 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Note that the packages generated using BootImagePackage are only candidates for inclu-
sion in the image. A package is only actually included if the method BootImagePackage.
isPartOfMaxineVM() for the Package instance returns true. This allows additional controls,
such as system properties, to fine tune the inclusion. For recursive and redirected packages, Package
instances are created automatically by cloning the Package that initiated the inclusion, then modify-
ing the package name. Therefore any overridden methods, such as isPartOfMaxineVM(), in the
including Package will be in effect in for all the included packages. However, any actual Package
classes that do exists in included sub-packages are instantiated and replace the clone.

Configuring the extensions classes

As noted above, adding an extension class does not necessarily cause its methods to be compiled in the
boot image. Static fields may also need to be reset if they contain host-specific values and it may also be
necessary to re-run the static initializer to create the illusion that class was actually loaded at run-time by
the VM. The class com.sun.max.vm.hosted.Extensions provided several methods to achieve
these goals:

• resetField(String className, String fieldName): reset a static field back to
its default value. Note that presently there is no check on the value of either of these arguments,
and bad values will be silently ignored.

• registerClassForReInit(String className): run the static initializer on VM
startup.

• registerVMEntryPoint(String className, String methodName): register a
method as a root for inclusion in the boot image.

7.9.6 Dynamic Extension

A dynamic (VM) extension is packaged in a jar file and loaded by the VM class loader at runtime, just
before the main class is loaded, in a very similar way to that for Java agents. The essential difference is
that Java agents are considered application extensions and loaded by the system class loader, whereas a
VM extension is loaded by the VM classloader. This allows the VM extension classes to reference the
VM classes in the boot image and use the extended features of Maxine, e.g., Maxine annotations and
systems programming support.

A VM extension jar file must contain a manifest that defines a VMExtension-Class attribute that specifies
the class that is the entry point to the extension, e.g.:

Manifest-Version: 1.0
VMExtension-Class: com.oracle.max.vm.ext.acme.AcmeExtension

This class must define a method with the following signature:

public static void onLoad(String args);

The VM is fully functional at the time that this method is called but, as for Java agents, the method must
return for the startup sequence to proceed. If the extension cannot be resolved (for example, because
the extension class cannot be loaded, or because the extension class does not have a conformant onLoad
method), the VM will abort. If an onLoad method throws an uncaught exception, the VM will abort.

To load the extension at runtime use the --vmextension:jarpath[=args] option, vis:

7.9. VM Boot Image 47

Maxine-VM Documentation, Release 2.6.0

mx vm --vmextension:acme_vmextension.jar=args ...

Multiple extensions may specified and they are processed in the order they appear on the command line.
The jar file is appended to the class path used by the VM classloader. If reference needs to be made
to additional classes outside the jar file, these may be specified using the optional manifest attribute
VM-Class-Path which has a similar specification to Boot-Class-Path for Java agents.

Automatic memory management has become an essential feature of modern programming languages as
it frees programmers from explicit memory management, a time-consuming and error-prone activity.

7.10 Meta-circularity and memory management

As a meta-circular virtual machine, Maxine can benefit from automatic memory management as well,
something that VMs written in lower-level languages such as C or C++ cannot.

An initial design decision in Maxine was to manage (almost) all memory used internally by the VM
in the same way as memory used by applications. All internal data structures required for class load-
ing, compilation, verification, etc., are represented as normal heap-allocated Java objects. Although
this decision has indeed simplified VM development, an unfortunate consequence is that (internal) VM
operations pollute the application heap, with consequences for application performance.

A meta-circular VM can avoid perturbing the application heap and optimize VM performance by ex-
ploiting knowledge of the allocation and object lifetime profiles of its internal subsystems. For example,
intermediate objects allocated during compilation have a limited lifetime. Once a compilation has fin-
ished, only the objects representing the final product remain alive. It would be advantageous to segregate
these objects from application objects and to reclaim them with specialized mechanisms that are faster
than for general application objects. Similar reasoning can be applied to objects allocated by other
sub-systems.

7.11 Maxine’s current Generational GC

Maxine has recently adopted a simple generational collector implemented by the GenSSHeapScheme
heap scheme. Details on this new heap scheme and its performance with respect to the original semi-
space GC are presented here.

7.12 Maxine’s semi-space GC

Maxine still includes its original simple semi-space copying collector implemented by
SemiSpaceHeapScheme. This allows to fall back on a very simple and robust implementa-
tion both for experimentation purposes and to diagnose problems.

7.13 Next generation GC in Maxine

To address the issues sketched above, we are engaged in the design and implementation of a novel
region-based garbage collection sub-system for Maxine. Our intentions are to make Maxine competitive
with state of the art GC work and to better address issues specific to meta-circular VMs. In this design

48 Chapter 7. Table of Contents

https://web.archive.org/web/20150516045756/https://wikis.oracle.com/display/MaxineVM/Generational+Heap+Scheme

Maxine-VM Documentation, Release 2.6.0

a heap may be composed of fixed-size, possibly non-contiguous regions, in order to favor incremen-
tal collections and to support multiple, independently collectible heaps. The GC itself will follow an
incremental hybrid mark-sweep approach with policy-driven evacuation.

The long term goals of this effort are to:

• support generational and incremental collection;

• support multiple, independently collectible heaps, with dedicated heaps for VM activities such as
compiling, verifying, class loading, etc.;

• foster research on the use and implementation of region-based multiple-heap such as:

– user-level use of multiple isolated heaps to address pause time issues with large monolithic
heaps;

– investigate GC-heaps that do not requires a contiguous virtual address space; and

– dynamically attachable object heaps, for example to enable constructs such as shared object
memories and persistent pre-populated heaps.

The building blocks for this new GC framework are in place and have been tested with the addition
of a pure mark-sweep heap scheme. The mark-sweep heap scheme allows testing of some of the base
components of the future region-based garbage collector (namely a tricolor tracing algorithm).

7.14 Management of Code Dependencies

The Management of dependencies from compiled methods to classes, methods and other entities where
such dependencies may change and result in some action (e.g. deoptimization) being applied to a com-
piled method.

7.14.1 Overall Architecture

A dependency is a relationship between a `TargetMethod <./Glossary#target-method>‘__, that is,
the result of a compilation, and an assumption that was made by the compiler during the compilation.
The assumption may be any invariant that can be checked for validity at a future time. Assumptions
are specified by subclasses of CiAssumptions.Assumption. Instances of such classes typically
contain references to VM objects that, for example, represent methods, i.e., RiResolvedMethod.
Note that assumptions at this level are generally specified using compiler and VM independent types,
and are defined in a compiler and VM independent project (package). However, there is nothing that
prevents a VM specific assumption being defined using VM specific types.

Since an assumption has to be validated any time the global state of the VM changes, for example,
a new class is loaded, it must persist as long as the associated TargetMethod. To minimize the
amount of storage space occupied by assumptions, and to simplify analysis in a concrete VM, validated
assumptions are converted to dependencies, which use a densely encoded form of the concrete VM types
using small integers, such as ClassID.

All assumptions have an associated context class which identifies the class that the assumption affects.
For example, the ConcreteSubtype assumption specifies that a class T has a single unique subtype U. In
this case, T is defined to be the context class.

The possible set of assumptions and associated dependencies is open-ended. In order to pro-
vide for easy extensibility while keeping the core of the system independent, the concept of a

7.14. Management of Code Dependencies 49

Maxine-VM Documentation, Release 2.6.0

DependencyProcessor is introduced. A DependencyProcessor is responsible for the fol-
lowing:

• the validation of the associated assumption.

• the encoding of the assumption into an efficient packed form

• the processing of the packed form, converting back to an object form for ease of analysis

• supporting the application of a dependency visitor for analysis

• providing a string based representation of the dependency for tracing

7.14.2 Analysing Dependencies

A visitor pattern is used to support the analysis of a Dependencies instance. Recall that each such in-
stance relates to a single TargetMethod, may contain dependencies related to several context classes
and each of these may contain dependencies corresponding to several dependency processors.

Since the set of DependencyProcessors is open ended, and a visitor may want to visit the data
corresponding to several dependency processors in one visit, implementation class inheritance cannot
be used to create a specific visitor. Instead, a two-level type structure is used, with interfaces defined
in the specific DependencyProcessor class that declare the statically typed methods that result
from decoding the packed form of the dependency. Note that these typically correspond closely to
the original CiAssumptions.Assumption but with compiler/VM independent types replaced with
Maxine specific types. E.g., RiResolvedType replaced with ClassActor.

7.14.3 Dependencies Visitor

Dependencies.DependencyVisitor handles the aspects of the iteration that are independent of
the dependency processors. See Dependencies.DependencyVisitor for more details.

The data for each dependency processor is visited by invoking Dependencies.
DependencyVisitor.visit for each individual dependency. This method is generic since
it cannot know anything about the types of the data associated with the dependency. The de-
fault implementation handles this by calling DependencyProcessor.match which returns
dependencyVisitor if the visitor implements the DependencyProcessorVisitor in-
terface defined by the processor that specifies the types of the data in the dependency, or null if
not. It then invokes DependencyProcessor.visit with this value, which invokes the typed
method in the interface if the value is non-null, and steps the index to the next dependency. Defining
DependencyProcessor.visit this way allows a different DependencyProcessorVisitor
to be called by an overriding implementation of Dependencies.DependencyVisitor.visit.
For example, a visitor that cannot know all the dependency processors in the system, yet wants to invoke
the DependencyProcessor.ToStringDependencyProcessorVisitor.

7.14.4 Defining a new Dependency Processor

The first step is to define a new subclass of CiAssumptions.Assumption. If, as is typical, the
dependency is used within the optimizing compiler, then this subclass should be defined by adding it to
CiAssumptions.

Next define a subclass of DependencyProcessor that will handle this assumption in Max-
ine, and place it in the com.sun.max.vm.compiler.deps package. Define a nested in-

50 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

terface that extends of DependencyProcessorVisitor and defines a method with the
same arguments as the method in the CiAssumptions.Assumption subclass. To support
generic tracing of dependencies you should also define a subclass of DependencyProcessor.
ToStringDependencyProcessorVisitor that implements your interface method(s) and ap-
pends appropriate tracing data to the StringBuilder variable in DependencyProcessor.
ToStringDependencyProcessorVisitor.

Define a static final instance of the DependencyProcessor subclass, which will cause it to be
registered with DependenciesManager during boot image generation.

Finally, implement the remaining abstract methods:

• DependencyProcessor.match

• DependencyProcessor.getToStringDependencyProcessorVisitor

• DependencyProcessor.visit

The first two have trivial implementations. The visit method must step over the specific dependency
data and, if the dependencyProcessorVisitor is not null, invoke the associated method, with
the encoded data transformed into the appropriate argument types. Evidently, if the visitor is null,
processing related to transforming the encoded data should be avoided.

Automatically generated from com.sun.max.vm.compiler.deps.package-info

7.15 Code Eviction in the Maxine VM

Maxine features no interpreter but instead employs only just-in-time compilation. This implies consid-
erable amounts of machine code are created in the course of executing an application. Machine code
can become outdated: methods may, after their first execution, later be recompiled by the optimizing
compiler, and static class initializers are even executed only once. To address the memory requirement
issue, code eviction was introduced to Maxine in Fall 2011 for baseline code, that is, machine code
generated by the T1X compiler.

7.15.1 Baseline Code Cache Management

Prior to the introduction of code eviction, Maxine featured two unmanaged code caches, that is, memory
areas where machine code is placed. The boot code region contains all machine code belonging to
the VM, it is filled during boot image building. The run-time code region was the one where all code
generated by either of the JIT compilers went. After introducing code eviction, the boot code and run-
time code regions still exist and are unmanaged, but the latter now only contains code generated by the
optimizing compiler. One managed code region for baseline code was added. It adopts a semi-space
scheme as known from garbage collection. The most important benefit of this scheme is that it implicitly
compacts memory upon collection, so that bump-pointer allocation can be applied. The semi-space code
region to-space is where newly allocated code is placed (and where code surviving an eviction cycle is
moved); its from-space is where code subject to eviction is found.

7.15.2 Code Eviction Workflow

An eviction cycle is triggered when the VM’s attempt to allocate space in the baseline code region fails.
If that happens, all threads are suspended (eviction is a stop-the-world VM Operation). The workflow is
controlled from the CodeEviction.doIt() method, and proceeds in the following steps.

7.15. Code Eviction in the Maxine VM 51

Maxine-VM Documentation, Release 2.6.0

Identify Survivors

The eviction logic needs to know which machine code survives the eviction cycle. This takes place in
two steps:

1. walk all suspended threads’ call stacks and mark the baseline methods currently executing as live.
Likewise, their direct callees, if they are baseline methods as well, are marked as live. This ensures
that code of methods currently being run in any of the threads will not be evicted, and also that
code of methods that are very likely to be invoked again survives.

2. iterate over the current to-space and mark methods as live that need to be protected from eviction
for other reasons than being executed or likely to be invoked; namely, methods that have just
been compiled but were not yet placed in the baseline code cache (such methods are typically
the reason for an eviction cycle to be triggered in the first place) have an invocation counter
within optimization threshold and/or a type profile (such methods might soon be recompiled by
the optimizing compiler, and the profile information gathered for them should not be lost)

Invalidate Non-live Methods

Invalidation takes place in three steps:

1. the machine code of non-live methods in the baseline code region is overwritten with trap instruc-
tions. This is not strictly necessary but greatly helps in debugging

2. all entries in vtables and itables pointing to these methods are invalidated by letting them point to
the respective trampolines again. This is facilitated by iterating over the hubs of all loaded classes

3. all direct calls to non-live methods are invalidated by letting them reference trampolines again as
well. This implies iterating over all machine code in the three different code regions and checking
direct call sites. Direct calls from the boot code region to baseline code are rare, so there is an
optimization in place that collects all such calls (they are established at run-time) and thereby
avoids iterating over the entire boot code region

Move Live Methods

This is the step where semi-space functionality is actually applied. This affects methods that have not
been wiped in the previous step. In particular, this involves the following steps for each live method:

1. Invalidate vtable and itable entries.

2. Copy the method’s entire bytes (code and literals arrays) over to to-space.

3. Wipe the machine code and literal arrays as described above.

4. Memoise the old start of the method in from-space, and set new values for its start and end in
to-space.

5. Compute and set new values for the code and literals arrays and for the codeStart pointer.

6. Advance the to-space allocation mark by the method’s size.

7. Fix direct calls in and to moved code. Direct call sites are relative calls. Hence, all direct calls
in moved code have to be adjusted. This is achieved by iterating over all baseline methods (at
this point, only methods surviving eviction are affected) and fixing all direct call sites contained
therein. Also, direct calls to moved code have to be adjusted. This is achieved by iterating over
the optimized and boot code regions and fixing all direct calls to moved code.

52 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

8. Compact the baseline code region’s target methods array by removing entries for wiped (stale)
methods.

9. Fix return addresses on call stacks, and code pointers in local variables. Walk all threads’ call
stacks once more and fix return addresses that point to moved code. Likewise, fix pointers to
machine code held in CodePointers in the frames of the methods. This logic makes use of the
saved old code start of moved methods.

7.15.3 Tracing and Logging

The eviction algorithm contains copious logging capability using the VMLogger mechanism. There are
two distinct capabilities; logging the flow of the algorithm and dumping pertinent state of the VM before
and after the algorithm executes. Dumping is very verbose and does not place data in the VM log buffer.
However, it is defined as an logging operation so that it can be enabled using a consistent mechanism.

The loggable operations are separated into four areas, statistics, algorithmic details, code moving and
dumping, with the operations names prefixed by Stats_, Details_, Move_ and Dump, respectively.
The VM option -XX:+LogCodeEviction is used to enable logging, with tracing to the log file
enabled with -XX:+TraceCodeEviction. The options -XX:+LogCodeEvictionInclude
and -XX:+LogCodeEvictionExclude can be used to fine control which options are logged/traced.
The operation prefixes can be used in regular expressions to enable all operations in a particular area, for
example: -XX:+LogCodeEvictionExclude=Stats_.*. Note that dumping must be explicitly
enabled with -XX:+LogCodeEvictionInclude=Dump.

Automatically generated from com.sun.max.vm.code.package-info

7.16 Object representation in the Maxine VM

This page describes how objects are represented in the Maxine VM runtime. This aspect of the VM is
especially interesting for a variety of reasons.

As a metacircular VM, most of Maxine’s internal data structures, including those used to implement the
representation of objects (e.g. Actors, layouts), are themselves represented uniformly as objects. Some
of those objects, however, (see hubs) are of an extended type that is not expressible in the Java language,
and one kind of object (static tuples) cannot be expressed by any type.

As a compiled-only VM, Maxine can only start (“bootstrap”) from a synthesized binary boot image (see
Garden of Eden configurations). The boot heap in particular is a translation of an object graph created
during boot image generation, a process complicated by the fact that generation is hosted on a standard
VM but must deal with objects that cannot be represented in the standard language.

7.16.1 Heap

The general behavior of the heap (memory management, object allocation, garbage collection, etc.) is
configurable, defined by a binding to the VM’s heap scheme.

The runtime heap contains multiple heap segments. The first heap segment is the boot heap, which is
part of the VM’s boot image and which is pre-populated with the objects that the VM needs in order to
begin operation. The boot heap is represented in the standard heap format and is exceptional only in that
its objects never move, although they may become permanent garbage.

7.16. Object representation in the Maxine VM 53

http://en.wikipedia.org/wiki/Garden_of_Eden_(cellular_automaton)

Maxine-VM Documentation, Release 2.6.0

7.16.2 Object layout

The lowest level details of memory layout of objects (in particular with respect to headers, contents,
and pointers) is configured by a binding to the VM’s layout scheme. The scheme describes layout
information for the three kinds of object representation described below: tuples, arrays, and hybrids.
All memory access to the various parts of an object takes place via a layout scheme.

Of the two runtime layout schemes currently implemented, described below, OHM layout is the default
binding for CISC architectures (like x86) and HOM layout is the default for RISC architectures such as
SPARC. A third layout scheme (Hosted layout) is specialized for representing objects being prototyped
during boot image generation, especially important for the kinds of VM objects that cannot be directly
represented as standard Java objects.

OHM layout

The OHM object layout scheme, described as Origin-Header-Mixed, is implemented by class com.
sun.max.vm.layout.ohm.OhmLayoutScheme.

The OHM layout packs tuple objects for minimal space consumption, observing alignment restrictions.
Tuple objects have a 2 word header and are laid out as shown below:

cell/origin --> +-------------+
| class | // reference to dynamic hub of class
+-------------+
| misc | // monitor and hashcode

data --> +=============+
| |
: fields : // mixed reference and scalar data
| |
+-------------+

OHM array objects have a 3 word header and are laid out as shown below (OHM hybrid objects have a
similar header):

cell/origin --> +-------------+
| class | // reference to dynamic hub of class
+-------------+
| misc | // monitor and hashcode
+-------------+
| length |

data --> +=============+
| |
: elements :
| |
+-------------+

HOM layout

The HOM object layout scheme, described as Header-Origin-Mixed, is implemented by class com.
sun.max.vm.layout.hom.HomLayoutScheme.

This layout enables more optimized code on SPARC for accessing array elements smaller than a word.
The origin points at array element 0, so there is no need to perform address arithmetic to skip over the

54 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

header. On the other hand, this layout requires reading memory for converting between cell and origin
addresses, since they are not the same (as they are for OHM layout).

The HOM layout packs tuple objects for minimal space consumption, observing alignment restrictions.
Tuple objects have a 2 word header and are laid out as shown below.

cell --> +-------------+
| misc | // monitor and hashcode
+-------------+
| class | // reference to dynamic hub of class

origin/data --> +=============+
| |
: fields : // mixed reference and scalar data
| |
+-------------+

Array objects have a 3 word header and are laid out as shown below (HOM hybrid objects have a similar
header):

cell --> +-------------+
| length |
+-------------+
| misc | // monitor and hashcode
+-------------+
| class | // reference to dynamic hub of class

origin/data --> +=============+
| |
: elements :
| |
+-------------+

Hosted layout

The Hosted object layout scheme is not designed for VM runtime, but rather for the object prototyping
phase of boot image generation. The generation machinery runs hosted on a standard Java VM and
creates a prototype boot heap that will eventually be translated into the binary format of the target
platform, and written into the boot image. This layout scheme is implemented by class com.sun.
max.vm.layout.hosted.HostedLayoutScheme.

7.16.3 Object representation

There are exactly three low-level memory representations in the Maxine heap: Tuple representation
(for Java object instances), Array representation (for Java array instances), and Hybrid representation
(for Maxine hubs). Memory access to the parts of these three representations is mediated through a
layout scheme. Types and other aspects of object contents are defined by the ClassActor instance
that represents type of the object being represented.

Tuple representation

A Maxine tuple is a memory representation that combines a two-word header plus a collection of
named values (fields). The names, types, and locations of the values are defined by an instance of
class TupleClassActor.

7.16. Object representation in the Maxine VM 55

Maxine-VM Documentation, Release 2.6.0

As with all Maxine object representations, the first word of the tuple header points at the Dynamic hubs
for the class. The second (misc) word is used for a variety of purposes, including hash code and locking
information.

The tuple memory representation is used to represent standard Java class instances in the heap. Note that
Static tuples are also represented this way, even they are not ordinary class instances and have no type.

Array representation

A Maxine array is a memory representation that combines a three-word header plus some fixed num-
ber of values of identical type. The type of the array elements is defined by an instance of class
ArrayClassActor.

As with all Maxine object representations, the first word of the array header points at the Dynamic hubs
for the class. The second (misc) word is used for a variety of purposes, including hash code and locking
information. The third word holds the number of elements contained in the array.

The array memory representation is used to represent standard Java arrays in the heap.

Hybrid representation

A Maxine hybrid is a memory representation that combines a three-word header, a collection of named
values (fields), and an array of words. The names, types, and location of the field values, together with
information about the arrays, are defined by an instance of class HybridClassActor. Although
hybrids are represented uniformly as instances of a class, they are classes that cannot be expressed in
standard Java.

As with all Maxine object representations, the first word of the hybrid header points at the Dynamic hubs
for the class. The second (misc) word is used for a variety of purposes, including hash code and locking
information. The third word holds the number of words contained in the array.

The hybrid memory representation is used to represent Maxine Hubs in the heap, even though hubs are
not standard Java class instances and cannot be described with standard Java types.

7.16.4 Actors

Specific information about the contents of heap instances (tuples, arrays, and hybrids) is represented
uniformly using Java type information, represented in the form of class actors. Class actors are
themselves instances (represented as tuples) in the heap of the three types TupleClassActor,
ArrayClassActor, and HybridClassActor respectively.

7.16.5 Hubs

A hub is a Hybrid representation instance holding information, derived from a class actor, that must be
immediately accessible (one memory hop) from each class instance. That is, a hub is what is pointed to
from the (logical) class word of an object’s header. A hub corresponds to a TIB in the Jikes RVM.

Hubs hold the vtables and itables used for efficient method dispatch. They also hold all the informa-
tion needed when a garbage collector visits each instance, for example the size and reference map for
the instance, avoiding the need to reference any further objects, which could themselves be subject to
collection.

56 Chapter 7. Table of Contents

http://docs.codehaus.org/display/RVM/Object+Model

Maxine-VM Documentation, Release 2.6.0

Hubs contain both named fields and embedded arrays and thus cannot be represented as a ordi-
nary Java objects. They are instead represented as Hybrid representation, and their contents are
described uniformly with a class actor (describing a class not expressible in standard Java) of type
HybridClassActor.

There are two kinds of hubs, distinguished by the context of their use: Dynamic hubs are pointed to by
class instances, and Static hubs are pointed to by Static tuples.

Dynamic hubs

Every ClassActor in the VM holds a reference to the dynamic hub (an instance of class com.sun.
max.vm.actor.holder.DynamicHub) for the class it represents. Every instance of that class in
the heap contains (in its header) a reference to that dynamic hub.

The following figure depicts the relationships among a class instance, the dynamic hub for the class, and
the ClassActor for the type. The figure also demonstrates the three kinds of representation in the
heap: tuples, arrays, and hybrids.

The following screen snapshot shows how the dynamic hub for class com.sun.max.vm.type.
BootClassLoader appears in an Object Inspector View in the Maxine Inspector. It is displayed
as a hybrid object, with special display machinery for viewing the embedded arrays. The inspector’s
frame header identifies it as DynamicHubBootClassLoader, meaning the ‘‘DynamicHub‘‘ asso-
ciated with class ‘‘BootClassLoader‘‘.

Note also that the hub pointer for this instance of DynamicHub points to another DynamicHub which
is described as the ‘‘DynamicHub‘‘ associated with class ‘‘DynamicHub‘‘. In other words, the hub
pointer of that hub points at itself: it participates in its own implementation and closes the hub recursion
loop.

7.16. Object representation in the Maxine VM 57

Maxine-VM Documentation, Release 2.6.0

58 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Static hubs

There is exactly one kind of instance, represented as a Tuple representation in the heap, that cannot be
treated uniformly by the VM’s type information: a static tuple. A static tuple is unique in that cannot
be described by a type, so it has no ClassActor that describes its type and must be treated exceptionally
wherever types matter.

Every ClassActor in the VM holds a reference to a static tuple, which holds values of the class
(static) variables for the class. Each ClassActor also holds a reference to the static hub, an instance
of class com.sun.max.vm.actor.holder.StaticHub, to which the header of the static tuple
points. This specialized hub, to which only the static tuple points, allows uniform treatment by GC.

The following screen snapshot shows how the static hub for class com.sun.max.vm.type.
BootClassLoader appears in an Object Inspector View in the Maxine Inspector. It is displayed
as a Hybrid representation, with special display machinery for viewing the embedded arrays. The in-
spector’s frame header identifies it as StaticHubBootClassLoader, meaning the ‘‘StaticHub‘‘
associated with class ‘‘BootClassLoader‘‘.

7.16. Object representation in the Maxine VM 59

Maxine-VM Documentation, Release 2.6.0

7.16.6 Static tuples

A static tuple is special kind of heap object that holds the class variables (static fields) for a class in
the VM. Although it appears superficially as an ordinary Tuple representation, with named fields, it
is unique within the heap in that it has no type at all: think of it as a singularity in the VM’s type
system (a byproduct of the VM’s metacircularity). In practice, this means that there is no ClassActor
describing any static tuple; they must be treated using implicit knowledge of their structure.

60 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

On the other hand, static tuples are represented the same as other tuples in heap memory, and are
amenable to ordinary garbage collection without special handling. This is done by having a special
kind of Static hubs to which they point.

The following screen snapshot shows how the static tuple for class com.sun.max.vm.type.
BootClassLoader appears in an Object Inspector View in the Maxine Inspector. It is displayed
as an ordinary tuple, but the frame header identifies it as StaticTupleBootClassLoader and its
hub pointer refers to an instance of StaticHub.

7.17 Schemes: Interfaces for Maxine VM Configuration

The Maxine VM is designed to be highly configurable, and it exploits standard Java language features
as much as possible to accomplish this. Maxine schemes are Java interfaces that define the interaction
between a subsystem and the rest of the VM.

This design encourages the creation of alternate implementations of those schemes, for example to
achieve different performance characteristics. It also enables the creation of specialized implementations
for development and testing, for example monitors that have no effect, a heap that doesn’t collect, or any
implementation with extensive internal checking and tracing.

The current design of schemes where by all logic is expressed purely in Java code is heavily tied to the
use of Java snippets which, in turn, are only supported by the C1X compiler. Given that this compiler is
scheduled to be deprecated and replaced by the Graal compiler, the design of schemes will be re-visited
to work with Graal.

7.17.1 VM configuration

All Maxine schemes extend the interface com.sun.max.vm.VMScheme.

A specific implementation of a scheme is by convention located in its own package and constitutes a
Maxine Package. It is documented, following Javadoc convention, by a file named package-info.
java in the package directory. It may also contain a class named Package, which may contain
additional configuration information.

A complete VM configuration includes bindings to a specific implementation of each scheme, specified
as command line options, processed by the class VMConfigurator, and represented during boot
image generation and VM runtime by an instance of class VMConfiguration.

The Boot Image Inspector view in the Maxine Inspector displays, among the other information about
the specific boot image being viewed, the specific bindings for each of Maxine’s schemes.

7.17. Schemes: Interfaces for Maxine VM Configuration 61

Maxine-VM Documentation, Release 2.6.0

62 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

7.17.2 Scheme Initialization

Each scheme implementation is notified by a call to the method initialize(MaxineVM.Phase
phase) when the VM enters different phases of its lifecycle. These phases are defined in the enum
Phase in class com.sun.max.vm.MaxineVM.

Phase BOOTSTRAPPING is assigned during boot image generation when the scheme implementation is
loaded, something of a misnomer since the term bootstrapping is generally used to describe the startup
sequence of the VM.

The following list describes the initialization calls that each scheme will receive, in order, during startup,
along with the presumed state of the VM in each instance:

• PRIMORDIAL VM code has started executing, but many features do not work yet.

• PRISTINE Java thread synchronization has become operational, but may not do anything yet.

• STARTING the VM is functional (i.e. threads and heap), but the JDK is not yet operational.

• RUNNING any necessary re-initializion of JDK classes is complete, system properties have been
processed, all pure Java language features are operational, and the VM is about to start executing
application code.

• TERMINATING the VM is about to terminate, many VM features have shut down, and this the
last chance to interpose (but with very limited VM functionality).

7.17.3 Object Layout (LayoutScheme)

An implementation of the scheme defined by interface com.sun.max.vm.layout.
LayoutScheme configures how objects are represented in memory, including header and fields. See
Object layout for more details.

7.17.4 Object References (ReferenceScheme)

An implementation of the scheme defined by interface com.sun.max.vm.reference.
ReferenceScheme configures how objects are accessed for mutator use, for example direct pointers
or handles. The default binding is DirectReferenceScheme.

Note also that the Inspector, which runs in a separate process than the VM, is able to reuse a consid-
erable amount of VM code in a uniform way by creating a pseudo-configuration and binding a custom
implementation of ReferenceScheme that encapsulates a boxed address in the address space of the
VM process.

7.17.5 Heap allocation and garbage collection (HeapScheme)

An implementation of the scheme defined by interface com.sun.max.vm.heap.HeapScheme pro-
vides basic heap memory management, object allocation, and garbage collection.

Different implementations may include very different kinds of collectors. For example, the default
binding is GenSSHeapScheme, which implements a simple generational collector. Another binding
is SemiSpaceHeapScheme, which implements a straightforward semi-space collector. A third heap
scheme is the MSHeapScheme, which implements a pure mark-sweep algorithm.

7.17. Schemes: Interfaces for Maxine VM Configuration 63

Maxine-VM Documentation, Release 2.6.0

For certain kinds of testing it can be useful to bind implementations with limited or specialized function-
ality, for example with an implementation that allocates but never collects or one with extensive heap
checking or tracing.

7.17.6 Thread Synchronization (MonitorScheme)

An implementation of the scheme defined by interface com.sun.max.vm.monitor.
MonitorScheme supports synchronization in the VM.

The interface represents an abstraction of monitors. It specifically includes translation of the
monitorenter and monitorexit bytecodes, as well as the implementation of wait and notify
methods. Implementations might include thin locks, biased locking, hybrids, etc.

Some experimentation has already been done in this area, and the implementation currently in use is part
of a framework for “n-modal” locking schemes, a generalization of bimodal (as in JikesRVM) and tri-
modal designs. The framework is implemented by abstract class ModalMonitorScheme in package
com.sun.max.vm.monitor.modal.schemes. The default binding at present (implemented by
class ThinInflatedMonitorScheme) transitions between thin locks and inflated native monitors.

For certain kinds of testing it can be useful to disable monitor checking completely; this can be done by
binding the class IgnoreMonitorScheme into the VM configuration.

7.17.7 VM startup sequence (RunScheme)

An implementation of the scheme defined by interface com.sun.max.vm.run.RunScheme is in-
voked by the VM after it has started basic services and is ready to set up and run a language environment
such as Java or some other language.

The default binding is the standard Java runtime: JavaRunScheme (in package com.sun.max.vm.
run.java) starts up normal JDK services (a somewhat delicate piece of business), and then loads and
runs a user-specified Java class.

7.17.8 Compiler strategy (CompilationBroker)

The class com.sun.max.vm.compiler.CompilationBroker implements an adaptive compi-
lation system with multiple compilers with different compilation time / code quality tradeoffs. It encap-
sulates the necessary infrastructure for recording profiling data, selecting what and when to recompile,
etc.

The class CompilationBroker can be subclassed by using the max.CompilationBroker.
class system property with the boot image generator.

This is done as follows:

max -J/a-Dmax.CompilationBroker.class=com.acme.MyCompilationBroker image ..
→˓.

Note: that the CompilationBroker is going to be removed as well and be replaced by the JVM
Compiler Interface (JVMCI).

64 Chapter 7. Table of Contents

http://openjdk.java.net/jeps/243
http://openjdk.java.net/jeps/243

Maxine-VM Documentation, Release 2.6.0

7.18 Snippets in the Maxine VM

Snippets are designed to provide a clean separation between the runtime system and compiler in a
JVM. A clean separation allows either component to be modified or extended independently in the
pursuit of features or optimization. Furthermore, snippets are designed to isolate the implementation
of runtime features from each other. For example, the implementation of virtual dispatch need not be
aware of the object model or memory management implementation. The rest of this page provides the
implementation details of snippets in the Maxine VM and how they measure up against these design
goals. This is done by focusing on how the invokevirtual bytecode is implemented via snippets.
This is a non-trivial bytecode whose implementation depends on numerous runtime features.

When implementing any given JVM bytecode instruction in a compiler, it is useful to think of the
implementation in two parts: the JVM specification semantics and the VM runtime details. The compiler
has little or no flexibility with respect to JVM specification semantics; developers write code with these
semantics in mind and expect the JVM to be compliant. The runtime details however are completely at
the discretion of the VM implementer. Should vtables be used? If so, how are they laid out? How can
runtime information inform which optimizations (such as inlining) should be performed or even reversed
(de-optimized)?

With this context in mind, one description of snippets is that they are simply pieces of Java source code
that express the (partial) semantics and implementation of a bytecode instruction. There are typically
a number of snippets which, together, comprise the implementation of a single bytecode instruction.
Continuing with the invokevirtual example, the following summarizes its specification:

1. Resolve the method denoted by a symbolic reference in a constant pool.

2. Select the target method to be invoked based on the resolved method and the type of the receiver
(i.e. this at the call site).

3. Call the selected target method.

The first two steps are expressed by the following snippets:

@SNIPPET
@INLINE(afterSnippetsAreCompiled = true)
public static VirtualMethodActor resolveVirtualMethod(ResolutionGuard
→˓guard) {

if (guard.value == null) {
resolve(guard);

}
return UnsafeCast.asVirtualMethodActor(guard.value);

}

@INLINE(afterSnippetsAreCompiled = true)
public static Word selectNonPrivateVirtualMethod(Object receiver,
→˓VirtualMethodActor declaredMethod) {

final Hub hub = ObjectAccess.readHub(receiver);
return hub.getWord(declaredMethod.vTableIndex());

}

@SNIPPET
@INLINE(afterSnippetsAreCompiled = true)
public static Word selectVirtualMethod(Object receiver, VirtualMethodActor
→˓declaredMethod) {

if (declaredMethod.isPrivate()) {
// private methods do not have a vtable index, so directly compile

→˓and link the receiver. (continues on next page)

7.18. Snippets in the Maxine VM 65

Maxine-VM Documentation, Release 2.6.0

(continued from previous page)

return CompilationScheme.Static.compile(declaredMethod,
→˓CallEntryPoint.VTABLE_ENTRY_POINT);

}
return selectNonPrivateVirtualMethod(receiver, declaredMethod);

}

The second step (i.e. selectVirtualMethod) yields the machine code address (of the target
method) to be called. The compiler is expected to know how to emit a call (given a target address
and signature), and so a snippet is not used for this step.

The last point exemplifies an aspect of a compiler built around snippets. The compiler is expected to be
able to translate certain operations intrinsically. This includes all primitive operations such integer, float
and long arithmetic, local control flow constructs as well as the aforementioned capability for emitting
a call given a target address and signature. In Maxine, these operations are called compiler *builtins*.
Like snippets, they are also expressed as Java methods. For example, here is the builtin for integer
addition:

public static class IntPlus extends JavaBuiltin {
@BUILTIN(builtinClass = IntPlus.class)
public static int intPlus(int a, int b) {

return a + b;
}

}

The body of the intPlus method above exists solely for the purpose of folding (i.e. compile-time
evaluation) as well as IR interpretation. The compiler (backend) knows how to emit machine code
whenever it comes across a call to a builtin (i.e. any method with the @BUILTIN annotation).

7.18.1 VM feature isolation

Before drilling down to the details of how snippets are built and consumed by the compiler, it’s worth
using the invokevirtual example to demonstrate how snippets isolate the implementation details of VM
features from one other. Consider the following line in the ResolveVirtualMethod snippet:

if (guard.value == null) {

Depending on the VM configuration, a number of VM features (detailed below) are exercised by the
read-access of the value field from the guard object. While reading these, keep in mind that not one
of them is explicitly present in the snippet source code.

• Object model: An object model specifies how fields, array elements and object metadata are
layed out in the memory allocated for an object. The object model in the Maxine VM is a
configurable component represented by the LayoutScheme interface. There are currently
two different object model implementations in Maxine. With respect to snippets, the point to
note is that when switching between object models, there is no need to modify the code of the
ResolveVirtualMethod and SelectVirtualMethod snippets.

• Garbage collector barriers: If the VM is configured with a garbage collector that uses read-
barriers, then using a barrier (if necessary) for the read of the value value is solely the responsibil-
ity of the snippet implementing reading of reference fields.

• Garbage collector handles: The compiler tracks the types of Java variables and generates the
appropriate reference maps such that a GC can find all the object references in method activation.

66 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

• Object references: Maxine includes two (related) abstractions for specifying how object refer-
ences are implemented. The first, represented by the ReferenceScheme interface, encapsu-
lates the operations that can be applied to an object reference (a value of type java.lang.
Object) such as reading or writing a char from a reference at a given offset. This abstraction
has support for read or write barriers and so is used when compiling mutator (i.e. non-GC) code.
The second abstraction, represented by the GripScheme interface, has the same operations as
the first except that it omits any notion of barriers. A GripScheme deals with values of type
Grip and is used when implementing a garbage collector. Typically, an implementation of a
ReferenceScheme is bound to an implementation of a GripScheme. The default imple-
mentation of GripScheme is DirectGripScheme which treats object references as direct
memory pointers. However, alternative GripScheme implementations could be used to imple-
ment:

– compressed oops

– indirect object references via a handle table

– object references on a system that has hardware support for objects

7.18.2 IR Notation

The following sections include compiler IR examples. To aid comprehension of these examples, the IR
notation is informally described here.

The IR is composed of values, operations and procedure/function calls. Calls are composed of a target
followed by a set of (comma separated) arguments enclosed by ‘(‘ and ‘)’. A target enclosed by ‘<’ and
‘>’ is a builtin.

Values are named variables (e.g. method), constant objects prefixed with ‘@’ (e.g.
@GUARD_FOR_NAME) or primitive constants (e.g. 32).

All values and targets are typed. The type is indicated by a ‘#’ suffix followed by one of the type
characters in this table:

Character Description Bit width
R an object reference width of machine word
W an unsigned word width of machine word
I int 32
J long 64
F float 32
D double 64

The IR also has expressions, assignments, control flow and return constructs that should be self explana-
tory to anyone familiar with Java.

7.18.3 Using snippets

So how does the compiler actually use snippets when translating bytecode? The basic idea is that the
compiler translates each snippet into an IR (intermediate representation) graph which is stored in a
compiler-internal data structure. The issue of how the compiler initializes the collection of IR snippets
is described in the next section.

7.18. Snippets in the Maxine VM 67

Maxine-VM Documentation, Release 2.6.0

Here is an example of the IR that may be produced for the ResolveVirtualMethod and
SelectVirtualMethod snippets:

resolveVirtualMethod(guard#R)#R {
value#R := <readReferenceAtIntOffset>#R(guard#R, 24#I);
if (value#R == null#R) {

resolve#V(guard#R);
}
result#R := <readReferenceAtIntOffset>#R(guard#R, 24#I);
return#R result#R;

}

selectVirtualMethod(rcvr#R, method#W)#R {
flags#I := <readIntAtIntOffset>#R(method#R, 32#I);
tmp#I := <intAnd>#I(flags#I, 2#I);
if (tmp#I == 0) {

result#W := vtableDispatch#W(rcvr#R, method#R);
} else {

result#W := compile#W(method#R, @VTABLE_ENTRY_POINT#R);
}
return#W result#W;

}

When compiling other (non-snippet) methods, the front-end of the compiler responsible for parsing
bytecodes produces IR by weaving hand-crafted IR with the relevant snippet IR. For example, consider
the following Java source code method:

public String toString() {
return name();

}

The bytecode produced by javac for this method is:

aload_0
invokevirtual "name()"
areturn

When compiling this method, the compiler will weave in the pre-built IR for the
ResolveVirtualMethod and SelectVirtualMethod snippets to produce the following:

asString(this#R)#R {
value#R := <readReferenceAtIntOffset>#R(@GUARD_FOR_NAME#R, 24#I);
if (value#R == null#R) {

resolve(guard#R);
}
method#R := <readReferenceAtIntOffset>#R(@GUARD_FOR_NAME#R, 24#I);
flags#I := <readIntAtIntOffset>#I(method#R, 32#I);
tmp#I := <intAnd>#I(flags#I, 2#I);
if (tmp#I == 0) {

address#W := vtableDispatch#W(this#R, method#R);
} else {

address#W := compile#W(method#R, VTABLE_ENTRY_POINT#R);
}
result#R := <call>#R(address#W, this#R);
return#R result#R;

}

68 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Note that this is the code produced when the compiler has determined that the name method has not yet
been resolved. To determine that a method has been resolved, a compiler based on snippets can rely upon
folding and inlining during compilation. For this example, the guard object is a compile time constant
wrapping a resolved symbolic reference to method. Constant propagation combined with inlining and
folding will therefore reduce the above IR to a vtable dispatch:

asString(this#R)#R {
hub#R := <readReferenceAtIntOffset>#R(this#R, 0#I);
address#W := <builtinGetWord>#W(hub#R, 24#I, 64#I);
result#R := <call>#R(address#W, this#R);
return#R result#R;

}

Here is the source for vtableDispatch:

@INLINE
public static Word vtableDispatch(Object receiver, VirtualMethodActor
→˓declaredMethod) {

Hub hub = ObjectAccess.readHub(receiver);
return hub.getWord(declaredMethod.vTableIndex());

}

Note that the vtable dispatch logic also benefits from the VM feature isolation offered by snippets. That
is, it does not explicitly mention how to read a hub from an object - it just calls a method that does it
(which in turn is inlined).

While this compilation strategy produces optimal and correct code, its performance can suffer if the
pursuit of non-redundancy is uncompromising. The mechanism by which folding is performed in the
CPS compiler is to call Java methods via reflection. The overhead of reflection is significant:

• the IR values must be unboxed from their IR boxing types and then re-boxed to their Java boxing
types

• the reverse unboxing and reboxing is required for the return value

• a new array of arguments is constructed by stripping the continuation arguments from the CPS
call IR construct

• there is no chance for the compiler to inline the call and elide the boxing as these reflective calls
are made from general purpose folding logic

• reflection mandates type checking for all arguments, something that is redundant with the type
checking performed by the compiler itself

To address these performance concerns, the compiler can intrinsify some of the logic expressed in the
snippets. For example, it can do the resolution check itself. It can also determine if a resolved method
is private in which case it would simply prefer to use the vtableDispatch method as a snippet. In
general, there’s a need to revisit how the logic is split between the compiler and snippets so that compiler
performance is maximized while benefits of snippets are not lost.

7.18.4 Bootstrapping snippets

As seen in the previous section, the compiler uses pre-built IR snippets when compiling Java bytecode
methods. We’ve also shown how snippets are expressed as Java bytecode methods (derived from Java
source code). These two facts combined represent a cyclic dependency between the compiler and the
pre-built snippets. Snippets may also have cyclic dependencies among themselves. For example, the

7.18. Snippets in the Maxine VM 69

Maxine-VM Documentation, Release 2.6.0

Java source code for the ResolveVirtualMethod and SelectVirtualMethod snippets use
virtual method invocation themselves. In fact, almost all snippets depend on virtual method invocation.
These cyclic dependencies pose a bootstrap problem to the compiler implementer.

The general strategy to resolve all of these circular dependencies is to prepare the snippets using two
passes over all snippets:

1. The first pass (*snippet creation*) translates each snippet to IR without engaging in any opti-
mizations at all except mandatory inlining as directed by an @INLINE annotation. The snippets
are carefully crafted in such a way that they can make use of each other on an inlining basis,
practically using other snippets as macros.

2. The second pass (*snippet optimization*) optimizes the output of the first pass and stores the
optimized IR in a table.

A predicate is maintained by the compiler indicating whether the second phase has completed or not.
This information is used by the compiler to interpret the afterSnippetsAreCompiled flag of the
@INLINE annotation. When the annotation is present at a method declaration, then a call to the method
is inlined iff its compilation occurs after the second pass. This mechanism allows snippets to contain
method calls so that bootstrapping the snippets themselves bottoms out. Nevertheless these calls can later
be inlined after all snippets are available, while compiling other code. In other words, pre-built snippet
IR may not be fully optimized, but once woven into user code, they are subject to full optimization.

7.18.5 Annotations

The Java code for snippets relies on the following annotations, which serve as pragmas for the compiler:

• @SNIPPET: Denotes the entry point for a snippet.

• @FOLD: The annotated method must must have no arguments (apart from the implicit this if it is a
not static method). If the method is static, it is evaluated unconditionally by the compiler.
If the method is not static, it will be evaluated by the compile whenever its receiver is a compile
time constant.

• @INLINE: The annotated method is inlined by the compiler. If the
afterSnippetsAreCompiled flag has the default value (i.e. false), then the in-
lining is performed unconditionally. Otherwise, inlining is conditional upon the snippet
bootstrapping phase as described above.

• @NEVER_INLINE: The annotated method is never inlined by the compiler. In the context of
snippets, this is useful for denoting a slow path when generating code. That is, code the is rarely
expected to be called and so should not be inlined in the method being compiled.

7.18.6 Evaluation

1. Performance: To what extent do snippets affect the runtime and/or code quality of a compiler?

• [STRIKEOUT:Snippets in the Maxine VM are supported and used by the CPS compiler,
the only compiler currently capable of bootstrapping Maxine. The CPS compiler was co-
designed with the snippet mechanism. Unfortunately, the performance of this compiler is
sub-optimal both in terms of compilation speed and quality of compiled code. Given the
many factors affecting the quality of a compiler (choice of IR, register allocation algorithm
employed, optimizations performed, memory usage during compilation, etc.), it is hard mea-
sure the impact of snippets on the compiler’s performance. To perform a meaningful assess-

70 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

ment of snippets, one ideally needs to start with a compiler that is not based on snippets and
then modify it to use snippets. By doing so, once can measure the extent to which snippets
improve/degrade the runtime and/or code quality produced by a compiler. In addition, this
experiment will reveal the architectural impact of making a compiler snippet aware. That
is, to what extent do snippets complicate (or simplify) a compiler’s design. Once the C1X
compiler is integrated into Maxine, it will form the basis for such an experiment and thus
provide an answer to the performance question.] (outdated)

2. Expressiveness: How easy is it to express/comprehend the semantics of a bytecode instruction?

• Being written in Java source code, snippets can mostly be as easily written and compre-
hended as any other piece of Java code. The qualification is that one needs to be very aware
of the potential for causing infinite recursion. For example, when implementing the athrow
bytecode, it is important not to include any code that explicitly throws an exception. Fortu-
nately, infinite recursion is usually fail-fast and so one knows fairly quickly that something
is wrong.

3. Re-use: How easy is it to ensure that the semantics of a bytecode instruction are expressed in as
few places as possible?

• Other parts of the VM can simply call snippet code as normal Java methods.

4. Portability: How much needs to be changed when porting the VM to a new platform?

• The snippets include no machine code or even any compiler-specific code. Any platform
dependent code in a snippet is expressed as Java code that tests a compile-time constant
platform configuration value. As long as the compiler implements the protocol required for
bootstrapping the snippets, there should no need to modify any other parts of a replacement
compiler.

5. Syntactic correctness: How easy it is to verify that snippets are syntactically correct?

• As easy as having the Java source code compiler successfully compile the snippet source
code!

6. Optimization potential: How much do snippets enhance or inhibit optimization potential in a
compiler?

• Snippet IR is designed to be woven into the IR of a method before optimization. This means
all snippet IR is subject to complete optimization in the context of the method being com-
piled. So, in theory, a compiler based on snippets should allow maximum optimization of
the code paths that implement the runtime/compiler interface. However, it also means that
the quality of code generated for these code paths is at the mercy of the compiler. [STRIKE-
OUT:Due to the sub-optimal CPS compiler in Maxine, the code derived from snippets is far
from optimal.](outdated)

7. Compiler design: How much do snippets complicate or simplify a compiler’s design?

• This point can only be accurately addressed in the same way proposed for the Performance
question. Only then can one accurately comment on the architectural impact of making a
compiler snippet aware.

8. Locality: How easy is it to find and navigate the code related to a single snippet?

• This is one of the weaker aspects of snippets as they are currently implemented in the Max-
ine VM. The source code for the snippets is distributed amongst many classes, one class per
snippet. The properties of some snippets are encoded in the snippet class hierarchy. For ex-
ample, all snippets whose optimized IR must not include any calls (except to builtins) must

7.18. Snippets in the Maxine VM 71

Maxine-VM Documentation, Release 2.6.0

subclass the BuiltinsSnippet class while those that cannot be folded must subclass the
NonfoldableSnippet class. All such compilation-properties of snippets should really
be associated with the snippet entry point, possibly as elements of the @SNIPPET annota-
tion. In addition, the way in which snippets are discovered and registered with the compiler
is more complicated than it should be, relying on class initialization. [STRIKEOUT:Most of
these issues however, are simply code engineering issues that are relatively easy to remedy,
especially if modeled after the way in which XIR snippets are organized.](outdated)

9. Code Layout: What’s the granularity of control over how the generated code is organized?

• The code path for snippets is either inlined or involves a runtime call. [STRIKEOUT:Like
XIR, one would ideally like to be able to express fast inline path, out-of-line but in method
path, global stub and runtime call paths.](outdated) With some careful thought, modifying
or augmenting the @INLINE annotation may enable such code-layout to be expressed.

7.19 Stack Walking in the Maxine VM

This page documents the stack walking mechanism in the Maxine VM. It details the uses of stack walk-
ing as well as special considerations that need to be taken into account by the stack walking mechanism.

A stack walk is a traversal through the frames of the stack going from callee frames to caller frames.
That is, the walk through the frames is performed in the reverse order in which the frames were pushed
on the stack. This reflects the fact that callee frames always know the execution context of their caller’s
frame but the inverse is not true. The execution context of interest for a given frame is the value of
the instruction position, stack pointer and frame pointer in the frame. Note that the exact meaning of
a caller’s instruction pointer depends on the underlying platform. For example, on x86 platforms, the
CALL instruction pushes the address of the instruction following the CALL instruction to the stack. On
SPARC systems, the CALL instruction saves the address of the CALL instruction in the link register,
%i7. This distinction is critical when searching the stack for exception handlers (more on this below).

A stack walk is always performed for a specific reason or purpose which are detailed below.

7.19.1 Stack walk purpose 1: Exception handling

When an exception is thrown in Java, the stack of the current thread is searched for an appropriate
exception handler. For each target method corresponding to a frame on the stack, a search is performed
for an exception handler based on the current instruction position in the target method and the type of the
exception. Searching a target method based on these parameters takes into account how the exception
handler information is encoded.

Once an exception handler is found, the stack frame walker adjusts the current execution context to
affect a transfer of control to the exception handler. This usually just involves updating the current stack,
frame and instruction pointers. However, there are two special cases where a little more has to be done
when restoring the state before executing the exception handler:

• Implicit Exceptions: An implicit exception is one caused by a trap. In Maxine, the implicit
exceptions resulting from traps are null pointer exceptions, divide-by-zero exceptions and stack
overflow errors. When an implicit exception occurs in a frame that has an exception handler for
it, then the register state at the exception point must be restored before jumping to the exception
handler. This allows a register allocator to operate on the assumption there is a direct control
flow edge from any instruction that may cause an implicit exception to a local exception handler
covering that instruction.

72 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

• Stack Overflow: Stack overflow detection is implemented by using protecting a guard page near
the end of the stack. When a stack overflow error occurs, the guard page was unprotected by
the low-level trap handler. Before jumping to the exception handler, the guard page must be
reprotected.

7.19.2 Stack walk purpose 2: Stack reference map preparation

The garbage collector needs information about which stack slots and registers contain object references;
this information is stored in the stack reference map in thread-local memory. When preparing a reference
map, three cases can be distinguished:

• Top-most method. This method provides information about its stack and its registers.

• Caller saved method. This method provides information about its stack. When the method is at
a position where it called a callee saved method, it must provide a reference map for its registers
too.

• Callee-saved method. All references of this method lie on the stack. However, if they are refer-
ences or not depends on the registers of the caller method. Therefore this method must provide a
reference map that contains a bit for each register that is saved on the stack.

Note that this model imposes the following constraints:

1. A callee-saved method cannot call another callee-saved method.

2. A callee-saved method cannot be on the top of the stack.

One other important constraint on stack walking for reference map preparation is that it must never
perform any heap-allocation.

7.19.3 Stack walk purpose 3: Stack inspection

There are a number of subsystems in the VM that needs to inspect the frames on a stack. These are
lumped together under the purpose of stack inspection and perform one of the two following inspections
supported by the stack frame walker:

1. Low Level Inspection: The stack frame walker allocates no memory when performing this kind
of inspection. The client is notified (via the visitor pattern) of the following information for each
stack frame traversed:

• Stack pointer

• Frame pointer

• Instruction pointer

• Target method (optional) This stack walk is used with different visitors for exception han-
dling, reference map preparation, the inspector, and deoptimization.

2. High Level Inspection: The stack frame walker returns a list of method objects denoting the
methods for each frame on the stack.

The subsystems using a stack inspection are detailed below.

7.19. Stack Walking in the Maxine VM 73

Maxine-VM Documentation, Release 2.6.0

Creating a stack trace for an exception

When walking the stack for creating a stack trace, the stack frame walker must distinguish between
frames that should be included in the stack trace (application visible methods) and those that should not.
An object of type java.lang.StackTraceElement is created for each method included in the stack trace.

Inspector

The Maxine Inspector wants to get a detailed view of all stack frames for display in the Stack Inspector
view. For Java methods at stop positions or JIT methods, the JVM bytecode level local variables, operand
stack and monitor state is of interest. These are the same data structures that deoptimization, on-stack-
replacement, or a Java interpreter would work with.

74 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

7.19. Stack Walking in the Maxine VM 75

Maxine-VM Documentation, Release 2.6.0

JDK

The following JDK methods require inspecting the stack. They all only operate on methods that have an
associated class method actor.

• java.security.AccessController.getProtectionDomains()

• sun.reflect.Reflection.getCallerMethod(int)

• JVM_LatestUserDefinedLoader (defined in jvm.h)

Deoptimization

In order to deoptimize a certain method that is not the top most method, the stack frame walker needs
to patch the return address of a method to a different location (that performs the deoptimization and
continues execution in the interpreter). Note that also when this method is selected to perform a catch
for an exception, deoptimization must be performed.

7.20 Threads in the Maxine VM

Maxine threads are implemented using native threads of the underlying operating system, in contrast to
the “green threads” approach. Each thread is represented in the VM as an instance of class com.sun.
max.vm.thread.VmThread.

The Threads Inspector View of the Maxine Inspector displays information about all currently existing
threads in the VM.

7.20.1 The main thread

The main thread running in a new Maxine VM process executes the preliminary steps taken during VM
startup, up until the creation and running of the main Java thread. The C main function runs on this
thread.

The main thread (which appears initially in the Inspector as an “unnamed native” thread), eventually
becomes the thread on which the Java main thread runs.

76 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

7.20.2 Thread local memory

The VM allocates an area of memory for each thread known as the thread locals block, separate from
the thread’s stack. This area includes copies of thread local variables for VM internal use, and a stack
reference map, among others.

Thread local variables

The VM provides an extensible mechanism for allocating per-thread variables, often referred to simply
as thread locals. This mechanism is used by VM internals; it should not be confused with language-level
Thread local storage, which is supported in Java by the class java.lang.ThreadLocal.

Each instance of class com.sun.max.vm.thread.VmThreadLocal automatically creates a per-
thread word-length variable with a well-defined read/write protocol. That protocol depends on each vari-
able’s nature (an instance of the enum com.sun.max.vm.thread.VmThreadLocal.Nature),
which is fixed at creation. Many thread local variables are created as static members of the defining class
VmThreadLocal. Thread locals are also defined by other parts of the VM as needed.

Each thread local has a fixed name, assigned at creation, by which it can be referenced within the VM,
along with a boolean that specifies whether the variable will hold references. Each variable is also
assigned a description, a terse human-readable description of the variable’s purpose that is accessed by
the Maxine Inspector and made available to users in the Thread Locals View.

7.20. Threads in the Maxine VM 77

Maxine-VM Documentation, Release 2.6.0

78 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Thread locals area (TLA)

During boot image generation, a contiguous block of memory known as the thread locals area (TLA) is
defined to contain a word for each thread local variable, and each variable is assigned an offset into the
TLA. The first location in each TLA is reserved for the “safepoint latch”.

Three TLAs (with identical layout) are defined for each thread, one corresponding to each of the VM’s
three safepoint states: Enabled, Disabled, and Triggered. This design permits efficient implementation
of both safepoints and thread locals access. Since a dedicated register (R14 on x64) points to the TLA for
the current safepoint state, this means both safepoints and thread local variable access can be performed
with one or two loads and, more importantly, without control flow operations.

The base location of the three TLAs is recorded in the thread locals named ETLA, DTLA, and TTLA
respectively.

Stack reference map

Each thread has an associated stack reference map, a data structure that identifies the thread’s stack
locations that hold references to the heap. A StackReferenceMapPreparer prepares reference
maps on demand (using a stack walk, see “Stack reference map preparation”), just after a thread has
entered the frozen state (and is therefore at a safepoint) because of a GC operation.

The map uses one bit per word on the stack so it is about 3% of the stack size on a 32-bit system and
about 1.5% on a 64-bit system.

See class com.sun.max.vm.stack.StackReferenceMapPreparer.

Thread locals block (TLB)

Per-thread VM storage is in a separate thread locals block (TLB) that is allocated in native code and freed
by the native thread library mechanism for destructing thread specific keys (e.g. the second argument of
pthreadkeycreate(3)). This permits attaching native threads via JNI, where there is no way to
carve out a piece of the stack for the VM.

The TLB includes not only three Thread locals areas (TLAs) but also other thread-specific data such as
the stack reference map. The layout of the TLB is shown in the following diagram, copied from the
JavaDoc comments for class com.sun.max.vm.thread.VmThreadLocal:

(low addresses)

page aligned --> +---+
| X X X unmapped page X X X |
| X X X X X X |

page aligned --> +---+
| TLA (triggered) |
+---+
| TLA (enabled) |
+---+
| TLA (disabled) |
+---+
| NativeThreadLocalsStruct |
+---+
| |

(continues on next page)

7.20. Threads in the Maxine VM 79

Maxine-VM Documentation, Release 2.6.0

(continued from previous page)

| reference map |
| |
+---+

(high addresses)

You can use the -XX:+TraceThreads VM option to see the layout of the stack and TLB for each
thread as it starts.

Initialization completed for thread[id=3, name="main", native
→˓id=0x100096000]:
Stack layout:

+--------- 0x100096000 [+262144]
|
| OS thread specific data and native frames [720 bytes, 0.274658%]
|
+--------- 0x100095d30 [+261424]
|
| Frame of Java methods, native stubs and native functions [257328 bytes,
→˓98.162842%]
|
+--------- 0x100057000 [+4096]
|
| Stack yellow zone [4096 bytes, 1.562500%]
|
+--------- 0x100056000 [+0]
|
| Stack red zone [4096 bytes, 1.562500%]
|
+--------- 0x100055000 [-4096]

Thread locals block layout:
+--------- 0x10083a380 [+9088]
|
| reference map [4104 bytes, 45.158451%]
|
+--------- 0x100839378 [+4984]
|
| native thread locals [80 bytes, 0.880282%]
|
+--------- 0x100839328 [+4904]
|
| safepoints-disabled thread locals area [272 bytes, 2.992958%]
|
+--------- 0x100839218 [+4632]
|
| safepoints-enabled thread locals area [272 bytes, 2.992958%]
|
+--------- 0x100839108 [+4360]
|
| safepoints-triggered thread locals area [272 bytes, 2.992958%]
|
+--------- 0x100838ff8 [+4088]
|
| unmapped page [4088 bytes, 44.982395%]

(continues on next page)

80 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

(continued from previous page)

|
+--------- 0x100838000 [+0]

7.20.3 Safepoints

A safepoint is a special instruction in compiled VM code, at a location where a thread can be frozen
with guaranteed consistency between the thread’s stack and the heap, which is required for safe garbage
collection. Maxine compilers insert safepoints in branches, goto, and switch statements.

A safepoint incurs very low overhead in normal operation, but causes a trap when triggered in the thread;
this typically happens when the VM is preparing for garbage collection.

Abstract class com.sun.max.vm.runtime.Safepoint is specialized by subclasses with
platform-specific details of safepoint implementation.

7.20.4 Stack overflow detection

To implement stack overflow detection (which can result in raising a StackOverflowError), Max-
ine places guard pages at the limit of the stack. More precisely, Maxine uses OS page protection facilities
(see mprotect(2)) to make a couple of pages at the end of the stack non-readable and non-writable.
This enables stack overflow detection to be performed by a single instruction in the prologue of a method.
Mostly this instruction is effectively a no-op (i.e. has no side-effect visible to the program). For exam-
ple, the following stack banging instruction is used in Maxine on AMD64 to load a value from a fixed
(negative) offset from the stack pointer:

mov r11, [rsp - 12288] # load from 3 pages below %rsp

To understand how this may cause a trap, consider the following layout of a thread’s stack in Maxine:

High addresses

+---+
| OS thread specific data |
| and native frames |
+---+
| |
| Frames of Java methods, |

stack pointer --> | native stubs, and |
| native functions |
| |
+---+
| X X X Stack overflow detection X X X |
| X X X (yellow zone) X X X |

page aligned --> +---+
| X X X Stack overflow detection X X X |
| X X X (red zone) X X X |

page aligned --> +---+

Low addresses

If the value of %rsp - 12288 lies within the yellow zone, then a SIGSEGV signal will be raised.
Maxine’s VM signal handler will then test whether or not the faulting address lies within the yel-
low zone. If it does, then the protection bits of the yellow zone are modified such that further

7.20. Threads in the Maxine VM 81

Maxine-VM Documentation, Release 2.6.0

reads/writes to this page will not cause a trap. This should allow the code that allocates and raises a
StackOverflowError to execute without causing stack overflow itself. Just before returning to the
exception handler, the yellow zone is re-guarded. The red zone exists to detect the situation where the
stack overflow raising code uses too much stack. This is a fatal VM error. It’s also a fatal VM error if
stack overflow occurs when execution is in native code (called via JNI).

7.20.5 Thread local allocation buffer (TLAB)

A thread local allocation buffer (TLAB) is a portion of heap storage reserved for allocation by a single
thread. This allows heap allocation without synchronization, typically via a simple pointer increment.
Fast access to the thread’s TLAB is provided via thread local variables stored in the Thread locals area
(TLA). Most object allocation goes via the TLAB of the thread requesting the allocation first.

When a thread has exhausted its TLAB, it is refilled with a new one. TLAB refill decisions are driven
by a TLABRefillPolicy.

Because the logic of TLAB management and allocation is common to all implemen-
tations of HeapScheme, it is factored in the adaptor class com.sun.max.vm.heap.
HeapSchemeWithTLAB.

Aspects of TLAB management that depend on HeapScheme’s details are delegated to the concrete im-
plementations. These includes: handling requests that overflow the TLAB’s current free space, refilling
the TLAB with new heap space, actions to be taken on TLAB refill, making the TLAB parseable at GC
safepoint, or the choice of TLAB refill policy.

7.21 Type-based Logging

Type-based logging is the preferred way to log, and optionally trace, values of interest to aid in the
development and debugging of Maxine. The term type-based indicates that the logging methods use
statically typed values, rather than doing up-front conversion to String values as in string-based logging.

The standard method for debugging Maxine is interactively with the Maxine Inspector. However, there
are times when pure interactive debugging is inadequate, for example, in complex multi-threaded situa-
tions. To address this Maxine has, historically, used tracing calls, embedded in the VM source code and
using the Log class, that output specific data to either the standard output or a file. This approach has
some drawbacks:

• Although largely string based, the tracing calls must follow strict rules regarding GC interaction
and multi-threading.

• The source code can become obfuscated by the tracing code.

• There format of the tracing output is fixed by the tracing calls.

• There is no connection to the Maxine Inspector.

The framework provided by VMLogger attempts to address these drawbacks in the following ways:

• Replace the tracing generation calls with more abstract calls to methods in VMLogger.

• Handle multi-threading, GC issues automatically.

• Integrate the VMLogger data with the Maxine Inspector.

• Provide optional custom tracing in the style of Log but driven from the log.

82 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Note, the name log is overloaded. The existing Log class is not a log in the sense defined by VMLogger,
rather it is a mechanism for printing strings, scalars and some object types, e.g., threads, to an output
stream. In other words it is message oriented, similar to the platform logging framework. VMLogger
is more “type” oriented and is targeted towards in-memory log storage, with log inspection handled by
the Maxine Inspector. By storing object values directly in the log, rather than a string encoding, the
Inspector mechanisms for drilling down into the fields of an object can be exploited. In the following,
we refer to string-based logging as tracing.

The expectation is that each component, or module, of the VM has one or more associated loggers.
Loggers are identified by a short name and a longer description. A given logger is disabled by default
but can be enabled with a command line option at VM startup. Note: A Logger can be enabled in hosted
mode if that is appropriate for the VM component. All logger state is reset when the target VM starts,
so host settings do not persist.

It is also expected is that most loggers will be implemented using the automatic generation features of
VMLoggerGenerator and not be hand-written, except as regards custom tracing support. See the
section below entitled Automatic Generation.

VMLogger does not define the implementation of the log storage. This is handled by VMLog, which
is an abstract class that is capable of several implementations, with various tradeoffs regarding space
requirements and performance.

7.21.1 VMLogger

A VMLogger defines a set of operations, cardinality N each identified by an int code in the range [0
.. N-1]. A series of log methods are provided, that take the operation code and a varying number of
Word arguments (up to VMLog.Record.MAX_ARGS). Each log operation creates a log record that is
stored in a circular buffer, the size of which is determined when the VM image is built. The thread (id)
generating the log record is automatically recorded.

In order to connect the operation code with a String value that can be used to identify the operation,
e.g. for tracing, VM startup options, etc., a logger should provide an overriding implementation of
VMLogger.operationName(int) that returns a descriptive name for the operation.

Enabling Logging

Logging is enabled on a per logger basis through the use of a standard -XX:+LogMMM option de-
rived from the logger name, in this case MMM. Tracing to the Log stream is also available through
-XX:+TraceMMM. A default tracing implementation is provided, although this can be overridden by
a given logger. Enabling tracing also enables logging, as the trace is driven from the log. Note: It is
not possible to check the options until the VM startup has reached a certain point. In order not to lose
logging in the early phases, logging, but not tracing, is always enabled on VM startup.

Fine control over which operations are logged (and therefore traced) is provided by the
-XX:LogMMMInclude=pattern and -XX:LogMMMExclude=pattern options. The pattern is
a regular expression in the syntax expected by Pattern and refers to the operation names returned by
VMLogger.operationName. By default all operations are logged. However, if the include option
is set, only those operations that match the pattern are logged. In either case, if the exclude option is
provided, the set is reduced by those operations that match the exclude pattern.

The management of log records is handled in a separate class; a subclass of VMLog. A instance requests
a record that can store a given number of arguments from the singleton VMLog.vmLog instance and
then records the values. The format of the log record is opaque to allow a variety of implementations.

7.21. Type-based Logging 83

Maxine-VM Documentation, Release 2.6.0

Performance Concerns

In simple use logging affects performance even when disabled because the disabled check happens inside
the VMLogger log methods, so the cost of the argument evaluation and method call is always paid when
used in the straightforward manner, e.g.: logger.log(op, arg1, arg2);

It is recommended that all log calls be guarded as follows:

if (logger.enabled()) {
logger.log(op, arg1, arg2);

}

The enabled method is always inlined.

Note: The guard can be a more complex condition. However, it is important not to use disjunctive
conditions that could result in a value of true for the guard when logger.enabled() would return
false, E.g.,

if {a || b} {
logger.log(op, arg1, arg2);

}

Conjunctive conditions can be useful. For example, say we wanted to suppress logging until a counter
reaches a certain value:

if (logger.enabled() && count >= value) {
logger.log(op, arg1, arg2);

}

Dependent Loggers

It is possible to have one logger override the default settings for other loggers. E.g., say we have loggers
A and B, but we want a way to turn both loggers on with a single overriding option. The way to do this is
to create a logger, say ALL, typically with no operations, that forces A and B into the enabled state if, and
only if, it is itself enabled. This can be achieved by overriding VMLogger.checkOptions() for
the ALL logger, and calling the VMLogger.forceDependentLoggerState method. See Heap.
gcAllLogger for an example of this.

It is also possible for a logger, say C, to inherit the settings of another logger, say ALL, again by forc-
ing ALL to check its options from within C’s checkOptions and then use ALL’s values to set C’s set-
tings. This is appropriate when ALL cannot know about C for abstraction reasons. See VMLogger.
checkDominantLoggerOptions.

Note: The order in which loggers have their options checked by the normal VM startup is unspecified.
Hence, a logger must always force the checking of a dependent logger’s options before accessing its
state.

Logging (for all loggers) may be enabled/disabled for a given thread, which can be useful to avoid
unwanted recursion in low-level code, see VMLog.setThreadState.

Automatic Generation

The standard type-safe way to log a collection of heteregenously typed values would be to first define a
class containing fields that correspond to the values, then acquire an instance of such a class, store the

84 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

values in the fields and then save the instance in the log. Note that this generally involves allocation;
at best it involves acquiring a pre-allocated instance in some way. It also necessarily involves a level
of indirection in the log buffer itself, as the buffer is constrained to be a container of reference values.
Since VM logging is a low level mechanism that must function in parts of the VM where allocation is
impossible, for example, during garbage collection, the standard approach is not appropriate. It is also
important to minimize the storage overhead for log records and the performance overhead of logging the
data. Therefore, a less type safe approach is adopted, that is partly mitigated by automatic generation of
logger code at VM image build time.

The automatic generation, see VMLoggerGenerator, is driven from an interface defining the logger
operations that is tagged with the VMLoggerInterface annotation. Since this is only used during
image generation the interface should also be tagged with HOSTED_ONLY. The logging operations are
defined as methods in the interface. In order to preserve the parameter names in the generated code,
each parameter should also be annotated with VMLogParam, e.g.:

@HOSTED_ONLY
@VMLoggerInterface
private interface ExampleLoggerInterface {

void foo(
@VMLogParam(name = "classActor") ClassActor classActor,
@VMLogParam(name = "base") Pointer base);

void bar(
@VMLogParam(name = "count") SomeClass someClass, int count);

}

The logger class should contain the comment pair:

// START GENERATED CODE
// END GENERATED CODE

somewhere in the source, typically at the end of the class. When VMLoggerGenerator is executed
it scans all VM classes for interfaces annotated with VMLoggerInterface and then generates an
abstract class containing the log methods, abstract method definitions for the associated trace methods,
and an implementation of the VMLogger.trace method that decodes the operation and invokes the
appropriate trace method.

The developer then defines the concrete implementation class that inherits from the automatically gen-
erated class and, if required implements the trace methods, e.g, from the ExampleLoggerOwner
class:

public static final class ExampleLogger extends ExampleLoggerAuto {
ExampleLogger() {

super("Example", "an example logger.");
}

@Override
protected void traceFoo(ClassActor classActor, Pointer base) {

Log.print("Class "); Log.print(classActor.name.string);
Log.print(", base:"); Log.println(base);

}

@Override
protected void traceBar(SomeClass someClass, int count) {

// SomeClass specific tracing

(continues on next page)

7.21. Type-based Logging 85

Maxine-VM Documentation, Release 2.6.0

(continued from previous page)

}
}

Note that if an argument name is not identified with VMLogParam it will be defined as argN, where N
is the argument index.

VMLogger has built-in support for several standard reference types, that have alternate representa-
tions as scalar values, such as ClassActor. As a general principle, reference types without an al-
ternate, unique, scalar representation should be avoided as log method arguments. However, this is
sometimes difficult or inconvenient, so it is possible to store references types. These should be passed
using VMLogger.objectArg and retrieved using VMLogger.toObject. This is automatically
handled by the generator. Note: Storing reference types in the log makes them reachable until such time
as they are overwritten. It is assumed that Enum types are always stored using their ordinal value. The
generator creates the appropriate conversions methods. It assumes that the enum declares the following
field:

public static final EnumType[] VALUES = values();

Tracing

When the tracing option for a logger is enabled, VMLogger.doTrace is invoked immediately after
the log record is created. After checking that calls to the Log class are possible, Log.lock is called,
then VMLogger.trace is called, followed by Log.unlock.

A default implementation of VMLogger is provided that calls methods in the Log class to print the log-
ger name, thread name and arguments. There are two ways to customize the output. The first is to over-
ride the VMLogger.logArg(int, Word) method to customize the output of a particular argument
- the default action is to print the value as a hex number. The second is to override VMLogger.trace
and do full customization. Note: Although the log is locked automatically and safepoints are disabled,
custom tracing must still take care not to invoke object allocation. In particular, string concatenation and
formatting should not be used.

7.21.2 Inspector Integration

The Inspector is generally able to display the log arguments appropriately, by using reflection to discover
the types of the arguments.

Two additional mechanisms are available for Inspector customization. The first is an override to generate
a custom String representation of a log argument:

@HOSTED_ONLY
public String inspectedArgValue(int op, int argNum, Word argValue);

If this method is defined for a given logger then the Inspector will call it for the given operation and
argument and, if it returns a non-null value, use the result.

The second is an override for a logger-defined argument value class:

@HOSTED_ONLY
public static String inspectedValue(Word argValue);

86 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

If this method is defined for the class and no standard customization is available, it will be called and, if
the result is non-null it will be used.

7.21.3 VMLog

VMLogmaintains the global table of VMLogger instances, and provides the log storage implementation
and support for interacting with the garbage collector. The actual log storage implementation is specified
by abstract methods and a particular implementation is chosen at VM image build time. The default
implementation is VMLogNativeThreadVariable which stores log records in a per-thread native
buffer. The other implementation that is provided with Maxine is VMLogArrayFixed, which can be
enabled by setting the max.vmlog.class system property to java.fix.VMLogArrayFixed.
This is an all-Java implementation that uses a global buffer comprising an array of fixed length VMLog.
Record instances. It should be used as a check if there is a suspicion that the default implementation
is manifesting a bug.

7.21.4 VMLog Flushing

By default, older log records are overwritten when the circular buffer wraps around. In normal use this
is not a problem, as the Inspector maintains all the log records in its own non-circular buffer. However,
in exceptional circumstances, for example when not running the Inspector, it may be convenient to flush
the log, say on a VM crash, rather than tracing every log operation. This can be enabled with the
-XX:VMLogFlush=setting VM option. The value of setting should be a comma separated string
contains one of the following:

• crash: flush the log on a VM crash

• exit: flush the log on normal VM exit

• full: flush the log whenever it becomes full (i.e., is about to overwrite old records)

• raw: output the log records as uninterpreted, raw, bits.

• trace: output the log records using the VMLogger.trace method

The default output mode is raw, which is robust, but requires offline interpretation. Trace mode may
be unstable after a VM crash as it may provoke a recursive crash.

Note that flushing the log when full, using trace mode output, is essentially equivalent to setting the
associated trace options, except for that the data might be “stale” by delaying the interpretation until the
log is flushed.

The Maxine Inspector can interpret a file of VMLog records using mx view -vmlog=file.
The simplest way to create the file is to redirect the log output to a file by setting export
MAXINE_LOG_FILE=maxine.log before running the VM, and then copying the file. The last step
is important because the Inspector will overwrite the log file when it executes (meta-circularity!).

Automatically generated from com.sun.max.vm.log.package-info

7.22 Virtual Machine Level Analysis

Maxine contains an experimental extension to support analysis of code executing on the virtual machine
(VM). Since the VM is itself written in Java, the analysis is applicable, in principle, to the VM itself, the

7.22. Virtual Machine Level Analysis 87

Maxine-VM Documentation, Release 2.6.0

platform (JDK) and the application.

The analysis is implemented primarily by advising the execution of the bytecodes. This is similar to sys-
tems like AspectJ except that the advice is applied to the bytecodes and not to language-level constructs.
However, since the translation of language-level constructs to bytecodes is well-defined, language-level
advising could, in principle, be added as a separate layer. Certain other VM runtime operations, for
example, garbage collection, thread start/end can also be advised.

The Virtual Machine Level Analysis (VMA) project is currently implemented as an extension to Maxine
in the com.oracle.max.vm.ext.vma and com.oracle.max.vma.tools projects. The im-
plementation exploits the flexibility inherent in the Maxine VM by defining custom versions of several
existing Maxine schemes, and building a custom VM image.

Currently bytecode advising is limited to code generated by the (template) JIT compiler, although it is
expected to be added to the optimizing compiler in due course.

VMA shares some similarity with aspects of the JVMTI API, most notably the method entry/exit and
field access/watch capabilities and some of the runtime advice, e.g. thread start/end. Eventually, the
redundant features may be removed and the two implementations merged. In the interim, some analyses
can benefit from both systems, using Maxine’s Java JVMTI interface JJVMTI.

There is the beginnings of VMA for Graal in the com.oracle.max.vm.ext.vma project. However,
it should be considered experimental.

7.22.1 Architecture

To facilitate experimentation the VMA architecture is highly flexible and configurable. The system
contains four basic components:

1. a custom version of the T1X JIT compiler (VMAT1X) that uses custom templates for adding
advice at bytecode translation time.

2. the VMA runtime which invokes methods in an advice handling class that can be specified either
at VM image build time or loaded dynamically as a VM extension.

3. a store interface that supports the persistent storage of advice data for offline analysis, with an
implementation that can

4. be specified at runtime.

5. a tool that can execute queries against the data in the persistent store.

Note that advising is disabled while in the scope of a handler execution, to prevent recursive entry from
instrumented code that may be shared by the handler.

7.22.2 Building a VMA-enabled image

mx image @vma-t1x

This VM image includes the custom VMA schemes but does not specify an advice handler which must,
therefore be loaded dynamically using the VM extension mechanism. By default advising is enabled,
and if no handler or built into the VM Image or loaded as a VM extension, the VM will abort. To disable
advising set -XX:-VMA option.

88 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

7.22.3 Running a VMA-enabled image

A VMA-enabled image can be run in the usual way with the max vm command. When
advising is enabled (the default), the VMAT1X compiler is used for compiling dynamically
loaded classes. This compiler will use the advice-enabled T1X templates. By default all
methods in dynamically loaded classes are processed by VMAT1X. However, this can be con-
trolled more precisely with the -XX:VMAMI and -XX:VMAMX options. Both options take val-
ues that are regular expressions in the format expected by java,util.regex.Pattern. The
-XX:VMAMI option specifies methods to include and -XX:VMAMX specifies methods to ex-
clude. If -XX:VMAMI is unset, all methods are candidates for processing with VMAT1X, oth-
erwise only those methods that match the pattern. In either case, if the -XX:VMAMX is also
set, it excludes any method in the candidate set that matches its pattern. The syntax of a
method pattern is qualified_classname#methodnameunqualified_param_class_1,
unqualified_param_class_2, Note that the parameter list braces must be escaped, as
must the square braces in any array class specifier. The wildcard specifier . can be used to match all
method names and/or signatures.

The exact set of bytecodes that have advice applied during compilation can also be controlled with
options. By default, all bytecodes are advised but, depending on the desired analysis, a subset is usually
more appropriate. While it is possible to be quite specific about exactly which bytecodes will be advised,
there are some predefined configurations set via the VMAConfig option that are easier to use, e.g.:

• entry: advises after method entry

• entryexit: advises after method entry and before return, including return by thrown exception

• monitor: advises the acquisition and release of monitors.

• read: advises any access to an object’s state. An access is defined as any read of an object’s
fields or its metadata or, if an array, it’s elements.

• write: advises any write to an object’s fields or, if an array, any of its elements.

• objectaccess: advises the creation of objects and all access sites.

• objectuse: advises the creation of objects and all usage sites. A use is defined as any load or
store of the object reference, or any access.

The VMAConfig options accepts a list of these configurations and aggregates them into a single set of
the appropriate bytecodes to be advised.

The specific bytecode advice controls are -XX:VMABI and -XX:VMABX and behave very similarly to
the class controls. Their argument is a regular expression matching bytecodes to be included or excluded,
respectively. To provide control over enabling before/after advice a bytecode may be suffixed by :A,
:B or :AB. Note that while all the bytecodes in the standard set defined by the JVM can be individually
controlled, the VMAdviceHandler interface aggregates the advice for collections of similar bytecodes
into a single method. For example, one can advice just the ICONST_0 and ICONST_2 bytecodes,
but the advice for both will be directed to the VMAdviceHandler.adviseBeforeConstLoad
method. The aggregating methods do not provide a way to distinguish which bytecode generated the
advice.

Recording Time

Certain handlers can optionally gather timing information, notably SyncStoreVMAdviceHandler
and VMLogStoreVMAdviceHandler. The VMATime option provides a standard way to specify
how time is gathered. If the option value is none, time is not recorded. If the value starts with wallns,

7.22. Virtual Machine Level Analysis 89

Maxine-VM Documentation, Release 2.6.0

then wall clock time is gathered using System.nanoTime. If the value starts with wallms, then wall
clock time is gathered using System.currentTimeMillis. VMLogStoreVMAdviceHandler
requires the advice records to be ordered in the per-thread persistent stores, so that the analysis tool can
reproduce a global order. As well as wall time, this can be achieved by a globally unique id, which can
be enabled by setting the option value to ida. This variant has considerably less overhead that gathering
wall clock time, yet tracks wall clock time quite closely. The TimeTestVMAdviceHandler can be
used to compare the two values over a run.

Thread Advising

By default all application threads are enabled for advice. However a subset can be enabled by using the
VMATI and VMATX options.

Sampled Advising

By default advising is on all the time which, evidently, has a significant performance impact on the appli-
cation. Sampled advising, which is enabled by the -XX:VMASample option only enables advising peri-
odically during the VM execution. The option value is a string of the form initialperiod,interval,period,
all of which are optional. The interval value denotes the time, in milliseconds, between advising periods.
The period value denotes the length of the advising period. The VM starts with advising enabled for
initialperiod. If not specified the values default to 50, 50 and 10, respectively.

VM Options Summary

• VMA: boolean valued option that enables/disables advising in the VM. Default is true.

• VMAMI=p: p is a regular expression pattern specifying methods to include for instrumentation.

• VMAMX=p: regular expression pattern specifying methods to exclude for instrumentation. Over-
rides VMAMI.

• VMAXJDK: boolean valued option that excludes all JDK classes from instrumentation.

• VMABI=p: p is a regular expression pattern of bytecodes to include for instrumentation.

• VMABX=p: p is a regular expression pattern of bytecodes to exclude for instrumentation. Over-
rides VMABI.

• VMAConfig=c: c is a comma spearated list of configuration names that instrument for specific
analyses.

• VMATI=p: p is a regular expression pattern of threads to have advising enabled.

• VMATX=p: p is a regular expression pattern of threads to have advising disabled. Overrides
VMATI.

• VMATime=none|wallns|wlaams|ida}: specify how time is recorded in certain advice
handlers. Default is wallns.

• VMASample=initialperiod,interval,period: run in sampling mode. Defaults to
50,50,10.

90 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

7.22.4 Standard Handlers

Several existing handlers are provided, most notably handlers that store the generated advice to an
external file for offline analysis. The default location for the external store is a directory vmastore in the
current working directory that the VM is launched in. This can be changed by setting the -Dmax.vma.
store.dir property.

SyncStoreVMAdviceHandler is a simple, but inefficient, handler that synchronously stores the
advice record to the store, and incurs per-advice synchronization overhead as all threads access the same
store. Output goes to the shared store file named vm in the store directory.

VMLogStoreVMAdviceHandler uses a custom instance of the VMLog class to store advice records
in per-thread buffers. When the buffer is full it is flushed to a file in a compact textual format, that can
be processed with the QueryAnalysis tool. VMLogStoreVMAdviceHandler adds a small, but
generally consistent, overhead to the execution of each bytecode. Assuming the use of the default text-
based store, it also causes object allocation as internal objects are converted into String representations
when the records are flushed. The maximum latency occurs when the store buffer is flushed to the file.
Note: this handler requires that some of its code to be included in the boot image as it adds some VM
thread local variables, and these cannot be added at runtime. This handler operates in per-thread mode
throughout the store process, thereby avoiding almost all synchronization overhead.

Developers can define additional handlers for specific purposes that may, for example, do all analysis
internally in the VM. An example is CBCVMAdviceHandler that simply counts the advice calls and
outputs a summary at the end of execution. ThreadLocalVMAdviceHandler analyses object use
for thread locality. Evidently such handlers incur much less CPU overhead that those that externalize
the data, but may incur additional memory costs. Handlers that only handle a subset of the advice
calls should subclass NullVMAdviceHandler which defines a null implementation of each advice
method. Note that CBCVMAdviceHandler can be used to estimate the size of the persistent store that
would be created by VMLogStoreVMAdviceHandler or SyncStoreVMAdviceHandler, since
the store will contain approximately the same number of lines as the number of advice counts reported.
On average a trace line in the store is 16 bytes in length.

Per-Object State

One of the issues for analysis tools, either online or offline, is associating analysis-specific state with an
object, for example a unique identifier. The standard approach is to use a Map but this has problems both
with the space overhead and the fact that the map keeps objects reachable, which perturbs the behavior
of the garbage collector. An WeakHashMap can mitigate the latter problem but perturbs the garbage
collector in a different way and provides no guarantee of object lookup if the object is collected.

VMA provides a solution to this by using a custom Maxine object layout scheme, XOhm, to provide
extra header words for use by VMA handlers. Evidently this has some impact on the behavior of the
system, for example, making garbage collection more frequent owing to the increased object size. How-
ever, the overhead is as minimal as can be achieved. By default, one extra word is provided and basic
access to the state word is provided by the ObjectState class. Support for unique identifiers is
provided through the ObjectId interface and support for marking bits through the ObjectBitSet
interface. The class SimpleObjectState implements both of these interface. Additional words
can be included by setting the max.vm.layout.xohm.words system property on the image build.
For example setting -Dmax.vm.layout.xohm.words=2 would provide a total of two additional
header words, one for use by ObjectId and ObjectBitSet and one for use by the handler. Access
to the additional words is through the ObjectVars interface. The class VarsObjectState extends
SimpleObjectState to implement this interface. Note that only scalar values can be stored in the
extra header words as they are not scanned by the garbage collector.

7.22. Virtual Machine Level Analysis 91

Maxine-VM Documentation, Release 2.6.0

Handlers that need to use an persistent object id to represent an object, should subclass
ObjectStateAdapter which implements all the VMAdviceHandler methods that take Object
types as arguments. Unique identifiers are assigned to objects returned by the NEW family of byte-
codes. Objects passed as arguments to the other methods are checked for a uuid having been assigned
and, if not, the abstract method unseenObject, which must be implemented the handler, is called.
The adapter also handles unique id generation for ClassLoader instances, since these may be user
defined.

7.22.5 Specifying handlers

Handlers can either be built into the boot image or loaded dynamically as a VM extension.

Building handlers into the boot image

To build an advice handler into the boot image set the max.vma.handler.class system prop-
erty to the fully qualified name of a class that extends VMAdviceHandler, e.g.:

mx --Jp @-Dmax.vma.handler.class=com.oracle.max.vm.ext.vma.handler.store.
→˓sync.h.SyncStoreVMAdviceHandler image @vma-t1x

A short form is available for the standard handlers using the max.vma.handler property:

• null: NullVMAdviceHandler

• syncstore: SyncStoreVMAdviceHandler

• vmlogstore: VMLogStoreVMAdviceHandler

• cbc: CBCVMAdviceHandler

• tl: ThreadLocalVMAdviceHandler

When creating a new handler it is important to prevent it being included in the boot image by default.
This is achieved by adding a Package class to the handler package that specifies inclusion only when
the -Dmax.vma.handler.class option matches the handler in question. See the the existing han-
dlers for an example.

Dynamically loaded handlers

Follow the instructions for building a VM extension JAR file, using one of the included handlers as an
example, the load the handler at runtime, e.g.:

mx vm -vmextension:yourhandler.jar ...

Also, look at one of the Eclipse JAR file creation descriptions for the existing handlers, in the file with
extension jardesc. Note that all referenced classes that are not already included in the boot image must
be specified in the jar file, as the VM extension mechanism has no search path support.

7.22.6 Instrumenting JDK classes in the Boot Image

It is possible to instrument JDK methods that were included in the boot image. This occurs transparently
if such a JDK method is in set of methods specified to be instrumented. This is implemented on VM

92 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

startup by deoptimizing the methods in the boot image. Note that this can greatly increase the quantity of
generated advice and also has an impact on the performance of the handlers themselves since, although
advising is disabled in the scope of a handler, the JDK method is no longer optimized.

Note that the -XX:+VMAXJDK can be used to suppress instrumentation of all JDK methods. Setting
this option is the easiest way to just instrument all application methods.

7.22.7 VMA and Handler Initialization

VMA overrides the standard run scheme, JavaRunScheme, with VMAJavaRunScheme, to inter-
pose on the VM startup to perform VMA specific initialization. VMAdviceHandler defines an
initialise(MaxineVM.Phase phase) method that normally should be overridden in a han-
dler, and this method is called from VMAJavaRunScheme. The only phases that are of interest are
BOOTSTRAPPING, RUNNING and TERMINATING. BOOTSTRAPPING is only relevant for the case
where the handler is being included in the boot image, and provides an opportunity to allocate and ini-
tialize certain data structures in the boot heap. Other initialization must be performed in the RUNNING
phase. In order for the handler to influence the behavior of the system, for example,to customize the
bytecodes that are advised, the handler’s initialise method is called before any methods are instrumented
and before the JDK classes are considered for deoptimization and instrumentation. Note that this means
that some JDK classes may be loaded and compiled without instrumentation as a side effect of being
used by the handler’s initialise method. However, these will be recompiled and instrumented if required
as part of the JDK instrumentation phase. Actual advice method invocations are not enabled until after
the VMAJavaRunScheme.initialize returns in the RUNNING phase. The TERMINATING phase
is typically where the handler reports any results, using whatever mechanism it chooses.

Note that the onLoad method of a dynamically loaded handler is called in the STARTING phase,
which precedes the RUNNING phase. Typically all the method should do is register an instance of the
handler using VMAJavaRunScheme.registerAdviceHandler, so that it can be invoked in the
RUNNING phase.

Properties to control VMA

VMA behavior can be controlled by setting some system properties in addition to the command line
options. These are generally handler specific.

Boot Image Generation Properties

• max.vma.vmlog: This property must be set on a boot image build and controls whether the
custom VMLog used by VMLogStoreVMAdviceHandler is included. It is on by default but
the code can be excluded by setting the value to false.

• max.vma.handler.class: The fully qualified name of a handler class to be included in the
boot image.

• max.vma.handler: The short name of a standard handler class to be included in the boot
image.

7.22. Virtual Machine Level Analysis 93

Maxine-VM Documentation, Release 2.6.0

Handler Specific Properties

• max.vma.handler.cbc.sort: When set, CBCVMAdviceHandler sorts the pan-thread
advice counts by frequency.

• max.vma.store.bufsize: The size of the StringBuilder used to buffer store records.
Default is 1 MB.

• max.vma.store.flush: The size at which the store buffer is flushed to the file; defaults to
max.vma.store.bufsize.

• max.vma.store.textkey: Use a 3 character mnemonic key for stored records instead of a
single digit code.

Performance

The performance overhead varies, evidently, with the set of bytecodes that are being advised and the set
of classes that are subject to instrumentation. Performance is fundamentally limited by VMA currently
being restricted to the T1X baseline compiler. The numbers presented below are for the SpecJVM98
benchmarks. The overhead of using T1X with no optimization for hot methods varies considerable
depending on the application behavior, averaging 6.9% for SpecJVM98 with a range of 1.0% to 16.7%.
The benchmarks that make use of the JDK classes show much less overhead since they are able exploit
the optimized JDK methods compiled into the boot image.

The NullVMAdviceHandler provides a measure of the basic overhead of a handler. The overhead
is relative to Maxine using T1X with no optimization of hot methods with every bytecode advised.
The average overhead is 3.5%, with a range of 1.8% to 7.3%, when only the benchmark classes are
instrumented. If we restrict the advice to just those bytecodes needed by the objectuse configuration,
the overhead averages 2.1% with a range of 1.3% to 3.7%. If the JDK classes are also instrumented,
including those in the boot image, the average overhead with all bytecodes advised increases to 5.6%,
with a range of 1.8% to 12% and for the objectuse configuration averages 2.9% with a range of 1.4%
to 6.8%.

7.22.8 Analysis Tools

QueryAnalysis

QueryAnalysis is a command line tool that was originally implemented in a project that was focused
on analyzing objects for immutability. It reads the compact text form of the store file and builds a data
structure suitable for analysis. The tool has no pre-defined analyses built in but supports dynamically
loaded queries that are written to a standard API.

The basic data structure created by the tool is a list of the advice records in the file. Object instances
and Maxine meta-objects, e.g. MethodActor, are replaced with types defined in the analysis tool,
namely ObjectRecord, ClassRecord, FieldRecord and MethodRecord, with the obvious
mappings.

The tools also builds some auxiliary data structures to facilitate analysis.

• objects: a map containing all the object instances in the store trace. The key is the id of the
object and the value is the ObjectRecord. Note that since id’s might be reused by the VM as
objects are garbage collected, the id is tagged with the allocation epoch to ensure uniqueness.

94 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

• classLoaders: a map from classloader instances to a (sorted) map from classes loaded by that
classloader. The key of the classLoaders map is the id of the classloader instance. The key of the
class map is the name of the class and the value is the ClassRecord.

• missingConstructors: Inevitably object instances occur in the trace for which no allocation
event was seen, e.g. objects allocated in the boot image. These are given id’s that decrease
from -1. The missingConstructors map is keyed by the id and the value is the associated
ObjectRecord.

• allocationEpochs: a list of AllocationEpoch objects that define when garbage collec-
tion events have occurred. Each instance specifies the period from one garbage collection to the
next.

• objectCount: the total number of object instances, that are not arrays, encountered in the trace.

• arrayCount: the total number of array instances in the trace.

Usage:

[-f inpath] [-v] [-i queryfile] [-e query]

The default value of inpath is vmastore. If the value is a directory (normal) it is expected to contain
either a vm file or a set of per-thread files. If the value is a file, it is used directly.

Options:

• -v: Report on progress reading the store file, showing the time to read every 100000 records.

• -e query: initial query to execute

• -i queryfile: Execute the commands in queryfile before entering interactive mode.

After processing the store file the tool enters interactive mode allowing queries to be executed against
the data structures described above. The input prompt is %%. The following interactive commands are
available:

• e query: The tool prepends com.oracle.max.vma.tools.qa.queries and appends
Query to queryclass and then attempts to load that class, which must be a subclass of
QueryBase, and then invokes its execute method. E.g., e Foo will attempt to invoke com.
oracle.max.vma.tools.qa.queries.FooQuery.execute. See below for details on
the pre-defined queries.

• i infile: Execute commands from infile.

• o outfile: Redirect output to outfile or the standard output if outfile omitted.

A query is executed with the command:

%% e query

Standard Query Arguments

• -v: set verbose output mode.

• -class name | -c name: restrict output to class name

• -thread name | -th name: restrict output to thread name.

• -id id: restrict output to object with id.

7.22. Virtual Machine Level Analysis 95

Maxine-VM Documentation, Release 2.6.0

• -clid id: restrict output to classloader id.

• -abs: report time as absolute

Evidently these arguments have a query-specific interpretation, within the general definition given above.

Pre-defined Analysis Queries

The analysis tool is meant to be easily extensible, but a set of simple query classes are included with
the tool. Many of these derive from the prior work on immutability so, for example, when displaying
objects it is typical for information on immutability to be output.

AdviceRecords -from fromindex -to toindex -showindex -indent

Lists the advice records reconstructed from the store. Note: Unless the range is constrained this gener-
ates even more output that contained in the original (comopressed) store, and is best redirected to a file
with the o outfile command. The -showIndex option adds the index of the record as a prefix, and the
-indent option indents on a method entry record.

BasicCounts

Displays the number of classes, classloaders, objects, arrays, the number of missing constructors and
also displays the result of the ImmutableCount query.

Classes

Displays the classes, showing the classloader and the number of instances of each class.

Additional arguments:

• -sortbycount: sort the output from largest number of instances to smallest.

ClassLoaders

Displays the classloader objects in the trace, i.e., those that inherit from java.lang.ClassLoader.

DataByClassLoader

For each classloader, display the data on objects of a given class loaded by that classloader.

Example output:

Objects organized by classloader

Classloader: (sun.misc.Launcher$AppClassLoader) -1:0
Objects organized by class
test.Simple, total objects 1

(continues on next page)

96 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

(continued from previous page)

1:0, c 223.318617ms, la 253.762114ms, lm 238.633649ms, stable for 49.
→˓693585%
Classloader: (com.sun.max.vm.type.BootClassLoader) -2:0

Objects organized by class
java.io.PrintStream, total objects 1

-4:0, c 253.77319ms, la 253.777241ms, lm 253.77319ms, stable for 100%
etc.

The end of construction by c, the last access time by la, and the last modify time by lm. Note that in the
current implementation objects whose construction was not observed are given ids that decrease from
-1, and a creation time of the first time they are accessed.

Additional options:

• -showthread: show the thread that allocated the instance (default false)

• -sort_lt: Sort instances by lifetime (highest to lowest)

• -sort_mlt: Sort instances by mutable lifetime (highest to lowest)

• -summary: Suppress the individual instance output and replace with the percentage of objects
immutable for more than a given percentile (default 100) (default false).

• -pci percentile: Set the percentile to use with -summary.

• -sort_summary mode: The summary data can be sorted by class mode == class, to-
tal number of instances mode == total or total number immutable for more than percentile,
mode = imm_total.

DataByClass

The same output as DataByClassLoader except for all classes, irrespective of classloader.

DataByObject

The data, in same format as DataByClass on all the objects in the objects map.

DataOnObject

The data on a specific object id.

DataByThreads

Similar output to DataByClass except grouped by the allocating thread.

Additional arguments:

• -summary: restrict output to the total number allocated and the total live number.

• -sort_lt: as per DataByClass.

• -sort_mlt: as per DataByClass.

7.22. Virtual Machine Level Analysis 97

Maxine-VM Documentation, Release 2.6.0

GC

Displays the allocation epochs in the trace, that is, the periods between garbage collections. If -r is set,
also displays the objects that were collected at the end of each epoch.

ImmutableClassBuckets

For each class: first computes the immutable lifetime as a percentage, then counts how many objects fall
into buckets that are 1% in size. E.g.:

Class sun.reflect.NativeMethodAccessorImpl, Object count 4

4: 1 (25.00) 42: 1 (25.00) 75: 1 (25.00) 100: 1 (25.00)

This means that one object was immutable for 4%, one for 42%, one for 75% and 1 for 100% of
respective lifetime. The number in brackets is the percent of the total for that bucket.

ImmutableCount

Displays the immutable object percentage and the immutable array percentage.

LiveObjects

Displays the total number and size of the live objects.

MissingConstructor

Displays the number of objects for which no trace was generated for construction and, if -v is set, the
data on those objects.

MutableObjects

Display all the mutable objects of a given class and the list of modifications.

StaticFieldAccess

Displays the accesses to the static fields of classes.

ThreadLocal

Analyzes the data for thread locality, reporting on objects created by one thread that are accessed by
another thread. Evidently, this analysis is dependent on the appropriate bytecodes being traced. The
objectuse configuration will report any use of an object, whereas objectaccess will report an
actual access to the content of an object.

98 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

CallGraph

Assuming that the store file contains method entry and exit traces, this query constructs a call graph and
displays it graphically using a standard Swing JTree.

ConvertLog

This tool can perform various conversion operations on the store file.

Usage:

[-f inpath] [-o outfile] [-readable | -unbatch | -batch | -merge] [-
→˓abstime]

The default value if inpath is vmastore. If no output file is specified the output goes to the standard
output. The options have the following effect:

• -readable: Generate a (more) readable form of the store file.

• -unbatch: Convert the store file containing records batched by thread into a time ordered file

• -batch: Reverse the process performed by -unbatch. This is a debugging tool to check the
-unbatch command.

• -abstime: By default store files denote time by the increment between successive records (in a
batch). This option will convert the file to use absolute time for each record.

• -merge: Merges all per-thread store files into a single output file.

Simple Tests

The com.oracle.max.vm.ext.vma.test package contains some simple test programs to exer-
cise the system, of which we highlight a few here. To simplify the exposition, assume that the current
working directory contains the Maxine projects and the following aliases have been defined:

alias qa="java -classpath com.oracle.max.vma.tools/bin:com.oracle.max.vm.
→˓ext.vma/bin com.oracle.max.vma.tools.qa.QueryAnalysis"
alias maxvma="max vm -cp com.oracle.max.vm.ext.vma/bin"

Simple

This is an example of a class with a non-final field that is stable in the sense that it is written to once
shortly after the constructor executes and is then immutable from that point on. To demonstrate this,
execute:

$ maxvma '-XX:VMAMI=test.Simple.*' test.Simple
$ qa
%% e DataByClass -c test.Simple
Objects organized by class
test.Simple, total objects 1, cl: (sun.misc.Launcher$AppClassLoader) -1:0

1:0, c 223.318617ms, la 253.762114ms, lm 238.633649ms, stable for 49.
→˓693585%

7.22. Virtual Machine Level Analysis 99

Maxine-VM Documentation, Release 2.6.0

GCTest

GCTest is a multi-threaded program where each thread iteratively builds up a list of objects with a
randomly generated lifetime, removing those that have expired after each iteration, and then invoking
System.GC. E.g.,

$ maxvma -XX:VMAMI='test.GCTest.*' test.GCTest
$ qa -v

processing trace file vmastore starting
processed 100000 traces in 1331 ms (1331)
processed 200000 traces in 1887 ms (556)
processed 300000 traces in 2399 ms (512)
processed 400000 traces in 2702 ms (303)
processed 500000 traces in 3024 ms (322)
processing trace file vmastore complete
%% e GC
Allocation epochs
Epoch 0, 0ms, 646.481ms
Epoch 1, 646.481ms, 772.329ms
Epoch 2, 772.329ms, 879.328ms
Epoch 3, 879.328ms, 985.426ms
Epoch 4, 985.426ms, 1117.057ms
Epoch 5, 1117.057ms, 1226.683ms
etc.

Since the store file is considerably larger for this example, we used the -v option to report processing
speed.

ThreadLocal01

ThreadLocal01 is a multi-threaded program where several worker threads (default 2) build lists of objects
that are private to the thread. Optionally the program can be configured so that they leak objects that are
accessed by a leak observer thread. To run in private (thread local) mode, execute:

$ maxvma -XX:VMAMI='test.ThreadLocal.*' test.ThreadLocal01

running with 2 threads
Thread Generator-0 running
Thread Generator-1 running
Thread Generator-0 returning
Thread Generator-1 returning
global list size 22, LeakObserver accessCount 437
main thread terminating
$ qa
%% e ThreadLocal
Check objects allocated by thread Generator-1
Check objects allocated by thread Generator-0
Check objects allocated by thread main
object 5:0 is accessed by thread Generator-0
object 2:0 is accessed by thread Generator-1
object 2:0 is accessed by thread Generator-0
object 9:0 is accessed by thread Generator-1
object 8:0 is accessed by thread Generator-1
object 6:0 is accessed by thread Generator-0

100 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

The ThreadLocal query determines that objects allocated by the generator threads are not accessed by
any other thread.

Now execute:

$ maxvma -XX:VMAMI='test.ThreadLocal.*' test.ThreadLocal01 -l

running with 2 threads
Thread LeakObserver running
Thread Generator-0 running
Thread Generator-1 running
Thread Generator-0 returning
Thread Generator-1 returning
main thread terminating
$ qa
%% e ThreadLocal
Check objects allocated by thread Generator-1
object 120:0 is accessed by thread LeakObserver
object 120:0 is accessed by thread Generator-0
object 161:0 is accessed by thread LeakObserver
object 283:0 is accessed by thread Generator-0
object 387:0 is accessed by thread LeakObserver
object 381:0 is accessed by thread LeakObserver
object 137:0 is accessed by thread Generator-0
object 147:0 is accessed by thread LeakObserver
object 30:0 is accessed by thread LeakObserver
object 30:0 is accessed by thread Generator-0
object 62:0 is accessed by thread LeakObserver
object 51:0 is accessed by thread LeakObserver
object 406:0 is accessed by thread LeakObserver
object 347:0 is accessed by thread LeakObserver
object 309:0 is accessed by thread Generator-0
object 208:0 is accessed by thread LeakObserver
object 208:0 is accessed by thread Generator-0
object 202:0 is accessed by thread LeakObserver
etc.

In this case the query detects that objects created by Generator-1 have leaked to both
LeakObserver and Generator-0. Note: since both generator threads are leaking objects to the
same global list, they also see each others leaks.

Note that a similar analysis is performed online by the ThreadLocalVMAdviceHandler.

Bugs and Limitations

The main limitation at present is that VMA is only available for the baseline (JIT) compiler, and that
many bytecodes do not support both BEFORE and AFTER advice.

7.23 VM Operations

A VM operation, implemented by class com.sun.max.vm.runtime.VmOperation is an opera-
tion that can be performed on one or more target threads by the VmOperationThread VM operation
thread. In the normal case a VM operation is performed after the target threads are frozen at a safepoint,
in which case every frame of a compiled/interpreted method on a frozen thread’s stack is guaranteed to

7.23. VM Operations 101

Maxine-VM Documentation, Release 2.6.0

be at an execution point where the complete frame state of the method is available. A VM operation
is formed by creating an instance of a subclass of com.sun.max.vm.runtime.VmOperation
and invoking the submit method on the instance. The behavior of the operation is specified by over-
riding the doThread method which, by default does nothing. I.e, such a default operation would
simply freeze the threads, do nothing, and then release them. The details of the relationship between
the VmOperation thread and the target threads is specified by an instance of the VmOperation.
Mode class. The normal case is indicated by Mode.Safepoint, which causes all target threads to
be frozen and the VmOoperation thread to block until the operation completes. We will focus on the
normal case in what follows and defer discussion of the other, more unusual modes, until later. Note
that the VmOperation class is only intended for use within the VM implementation. Consequently,
in the interface, threads are specified by the com.sun.max.vm.thread.VmThread class and not
java.lang.Thread.

A VM operation may target a subset of the threads in the VM, the degenerate case being a single thread,
which is specified explicitly in the constructor for VmOperation by the singleThread argument.
If this value is not null it denotes an operation solely on the specified thread. If singleThread is null
it specifies a multi-thread operation. This design simplifies the single thread case and avoids having to
provide the set of target threads explicitly in the multi-thread case. By default the multi-thread variant
acts on all threads (except the VmOperation thread itself). However, the VmOperation instance
can provide finer control by overriding the operateOnThread method. If this method returns false
for any VmThread passed as argument, that thread is ignored. I.e. it will neither be frozen nor have the
operation performed.

The following is a trivial example that simply prints the name of each frozen thread.

VmOperation op = new VmOperation("Example", null, Mode.Safepoint) {
@Override
public void doThread(VmThread vmThread, Pointer ip, Pointer sp,

→˓Pointer fp) {
System.out.println("Thread " + vmThread.getName() + " is stopped

→˓at " + Long.toHexString(ip.toLong()));
}

op.submit();

The first argument to the constructor is only used when tracing the operation for debugging purposes,
which can be enabled with the VM command line argument -XX:+TraceVmOperations. The three
Pointer arguments to doThread are the code address at which the thread is stopped and the stack
pointer and frame pointer, respectively. These values are generally used in operations that need to access
the execution stack, for example to generate a stack trace. Note that these values are all guaranteed to
be valid, in particular a thread that has been started but is not yet executing Java code will be filtered
out and not passed to doThread. Note that the constructor only initializes the instance, no part of the
operation occurs until the submit method is invoked. TBA: can a VMOperation instance be reused?

Many internal operations within the VM are implemented using VMOperation, most notably garbage
collection. So what happens if the code in doThread allocates memory and happens to cause a garbage
collection? Note that it can be quite difficult to determine by inspection whether a method allocates
objects. The above example contains no new keywords, but the string concatenation does so implicitly.
In fact it is very difficult to write allocation free code, so for VmOperation to be useful there must
be a solution to what is in effect a nested VmOperation. Since most operations can cause a garbage
collection, VmOperation supports nested operations by default, but they can be disabled by invoking
the more general constructor that takes a disAllowNestedOperations argument.

The output from running the above example should look like this:

102 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Thread Signal Dispatcher is stopped at 0x103fcb029
Thread Finalizer is stopped at 0x103fb2c44
Thread Reference Handler is stopped at 0x103fb2c44
Thread main is stopped at 0x103fb2c44

Notice that three non-application (system) threads are included in the list. Note also that all but Signal
Dispatcher are stopped at the same address. It doesn’t matter how many time you run the application,
this will always be the case. The reason related to the mechanism that is used to freeze the threads, and
is explained in the section on implementation details.

What if we only wanted the VmOperation to operate on application threads? One way, although not
a very stable solution, would be to provide an Override for operateOnThread that compared the
textual names of the threads. A better way would be to exploit the fact that system threads exist in
a separate ThreadGroup from application threads. For example, this operateOnThread method
would do:

protected boolean operateOnThread(VmThread vmThread) {
if (!systemThreads) {

return vmThread.javaThread().getThreadGroup() != VmThread.
→˓systemThreadGroup;

} else {
return true;

}
}

7.23.1 Implementation Details

A thread is frozen at a safepoint when it is blocked in native code (typically on an OS-level lock) and
cannot (re)enter compiled/interpreted Java code without being thawed (see class ThawThread) by the
VM operation thread.

Freezing a thread is a co-operative action between the VM operation thread and the thread(s) being
frozen. There are two alternative implementations of this mechanism provided. The first uses atomic
instructions and the second uses memory fences. They are named CAS and FENCE and are described
further below.

CAS

Atomic compare-and-swap (CAS) instructions are used to enforce transitions through the following state
machine:

+------+ +--------+
→˓ +---------+
| |--- M:JNI-Prolog{STORE} --->| |--- VM:WaitUntilFrozen{CAS} -
→˓-->| |
| JAVA | | NATIVE |
→˓ | FROZEN |
| |<--- M:JNI-Epilog{CAS} -----| |<----- VM:ThawThread{STORE} -
→˓---| |
+------+ +--------+
→˓ +---------+

The syntax for each transition operation is:

7.23. VM Operations 103

Maxine-VM Documentation, Release 2.6.0

thread ':' code '{' update-instruction '}'

The state pertains to the mutator thread and is recorded in the thread local variable of the mutator
thread. Each transition describes which thread makes the transition (M is the mutator thread, and VM
is the VM operation thread), the VM code implementing the transition JNI-Prolog, JNI-Epilog,
WaitUntilFrozen and ThawThread and the instruction used to update the state variable (CAS is
atomic compare-and-swap and STORE is normal memory store)

FENCE

Memory fences are used to implement Dekkers algorithm to ensure that a thread is never mutating during
a GC. This mechanism uses both the MUTATOR_STATE and FROZEN thread local variables of the muta-
tor thread. The operations that access these variables are in Snippets.nativeCallPrologue(),
Snippets.nativeCallEpilogue(), WaitUntilFrozen and ThawThread.

The choice of which synchronization mechanism to use is specified by the
UseCASBasedThreadFreezing variable.

Freezing a thread requires making it enter native code. For threads already in native code, this is trivial,
i.e., there’s nothing to do except to transition them to the frozen state. For threads executing in Java
code, safepoints are employed. Safepoints are small polling code sequences injected by the compiler at
prudently chosen execution points. The effect of executing a triggered safepoint is for the thread to trap.
The trap handler will then call a specified AtSafepoint procedure. This procedure synchronizes on
the global GC and thread lock. Since the VM operation thread holds this lock, a trapped thread will
eventually enter native code to block on the native monitor associated with the lock.

This mechanism is similar to but not exactly the same as the @code VM_Operation facility in
HotSpot except that Maxine VmOperations can freeze a partial set of the running threads as Maxine
implements per-thread safepoints (HotSpot doesn’t).

Implementation note

It is simplest for a mutator thread to be blocked this way. Only under this condition can the GC find
every reference on a slave thread’s stack. If the mutator thread blocked in a spin loop instead, finding
the references in the frame of the spinning method is hard (what refmap would be used?). Even if the
VM operation is not a GC, it may want to walk the stack of the mutator thread. Doing so requires the
VM operation thread to be able to find the starting point for the stack walk and this can only reliably be
done (through use of the Java frame anchors) when the mutator thread is blocked in native code.

7.23.2 Suspend and Resume Thread Operations

The ability to suspend and resume threads, which is required by the JVMTI interface, is implemented
using VmOperation, and nested classes SuspendThreadSet and ResumeThreadSet are pro-
vided in VmOperation. These operations are also used by the (deprecated) methods Thread.
suspend and Thread.resume.

A normal VM operation suspends (freezes in VMOperation terminology) the thread set temporarily,
runs the operation, and then resumes the thread set. All the machinery to safepoint a running Java thread
or handle a thread in native code is appropriate for the suspend operation, but the thread must stay
suspended after the operation completes until the resume operation is invoked. Ordinarily a thread is
frozen either by blocking on the THREAD_LOCK monitor held by the VmOperationThread (thread

104 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

in Java) or spinning in the return sequence from native code (thread in native). Evidently the monitor
must be released to exit the VmOperation so an additional mechanism is necessary to actually suspend
(as opposed to freeze) the thread. Consider the two cases:

1. Thread in Java: The thread is blocked on the THREAD_LOCKmonitor, called from the trap handler
that handled the safepoint. Note that because it is blocked on the monitor, it is also actually in
native code. The entire monitor acquisition process, which in Maxine currently can comprise
several stack frames, must be unwound in order to release the THREAD_LOCK monitor. In fact
we unwind all the way back to the trap handler.

2. Thread in Native: There are actually two cases here. Either the thread is truly blocked in native
code, for example, on some other monitor or performing I/O, or it is caught in the native code
return sequence and is spinning waiting to be unfrozen. In either case, when the thread actually
returns it must then suspend (unless a resume occurs before the thread actually returns).

A thread is marked for suspend by setting bit zero in the SUSPEND field of the VmThreadLocal
area. This value is only ever written while the thread is frozen in the body of the VmOperation.
SuspendThreadSet or VmOperation.ResumeThreadSet operation. When a thread is un-
frozen it will promptly check the SUSPEND bit and if it is set, will actually suspend on a native OS
monitor (suspend monitor) that is pre-allocated to every thread. For a thread in native this check happens
as the final act of the native return epilogue. To handle the special case of a thread that was safepointed
and is executing that sequence to release the THREAD_LOCK monitor, bit 1 of the SUSPEND field is
also set for safepointed threads, and the native epilogue checks that bit and does not suspend.

The Resume operation clears the SUSPEND field in the VmOperation body and notifies the suspend
monitor, which will cause any thread that actually suspended to become runnable again. Note that a
resumed thread must recheck the SUSPEND field since it is possible that another suspend operation
occurred before the thread actually got on CPU.

As a research VM, Maxine should make it is easy as possible to analyze the behavior of applications
and Maxine itself. Since Maxine is meta-circular, many of the techniques used to analyze applications
are also applicable to Maxine, although some aspects of meta-circularity can cause problems that can be
hard to foresee, such as trying to allocate on the heap during a garbage collection.

Maxine supports (most of) the standard JVMTI API, which supports agents written in native code. In
particular, the standard jdwp agent is supported which allows debugging of applications and, experimen-
tally, the VM itself, with a Java IDE. Since Maxine is written in Java, the native JVMTI interface is not
very appropriate, and Maxine provides a Java version of the JVMTI API, that is much easier to use than
the native interface.

7.24 VMTI

Maxine does not make reference to any specific tooling interface or implementation in the core VM code.
Instead it defines an interface VMTI that defines methods that a tooling implementation must implement
to be included in Maxine. Multiple tooling implementations can be active in a single VM. Currently
Maxine supports two tooling implementations, JVMTI and Virtual Machine Level Analysis. The latter,
which overlaps somewhat with JVMTI, is specific to Maxine and primarily supports the advising of the
execution of the virtual machine at the bytecode abstraction level.

7.24. VMTI 105

Maxine-VM Documentation, Release 2.6.0

7.25 JVMTI

The JVMTI implementation is contained in the package com.oracle.max.vm.ext.jvmti. Al-
though separately specified in an extension package, currently it is included by default in the default boot
image. The implementation is incomplete but sufficient for many purposes, including debugging. No-
table omissions are the methods related to monitor contention and the reference walking heap iterators.
The implementation will be completed in due course.

7.26 JJVMTI

JJVMTI is a Java version of the standard JVMTI native interface. As far as possible it is equivalent
the native version, so translation between the two should be straightforward. Some design choices were
changed to reflect the nature of Java. For example, whereas JVMTI returns errors as the function result,
and uses pointers to caller defined variables to pass data, JJVMTI throws an exception in the event of an
error and returns data as the method result. Also, whereas JVMTI necessarily uses either JNI handles or
scalar values to represent classes and methods, JJVMTI uses Maxine’s actor classes, e.g., ClassActor
Using JJVMTI

Writing a JJVMTI agent is considerably simpler than writing the equivalent JVMTI native agent, as
there is no need to deal with all the complexity of the JVMTI and JNI native interfaces. However, since
the agent must necessarily access Maxine VM classes, it must either be included in the boot image or
dynamically loaded as a VM extension (preferred). Note that, unlike JVMTI native agents, JJVMTI
agents cannot get control early in the VM startup, so certain changes to the VM environment cannot
be made. This currently does not affect Maxine as it does not reconfigure itself in response to JVMTI
capability requests.

The standard form of an agent that can be included in the boot image or loaded dynamically is as follows:

public class Agent extends NullJJVMTICallbacks {

private static Agent agent;
private static String AgentArgs;

static {
agent = (Agent) JJVMTIAgentAdapter.register(new Agent());
if (MaxineVM.isHosted()) {

VMOptions.addFieldOption("-XX:", "AgentArgs", "arguments for
→˓exemplar JJVMTI agent");

}
}

/***
* VM extension entry point.

* @param args

*/
public static void onLoad(String agentArgs) {

AgentArgs = agentArgs;
agent.onBoot();

}

/**
* Boot image entry point.

*/

(continues on next page)

106 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

(continued from previous page)

@Override
public void onBoot() {

agent.setEventNotificationMode(JVMTI_ENABLE, JVMTI_EVENT_VM_INIT,
→˓null);

}

@Override
public void vmInit() {

if (AgentArgs != null) {
// process arguments and enable needed JVMTI capabilities

}
}

}

Note that the mechanism for communicating arguments to the agent is necessarily different between
a boot image agent and a dynamically loaded agent. In the former case a new VM command line
option is defined, whereas in the latter case the arguments are passed in the VM extension option,
-vmextension:jar[=args]. Note also that onBoot is only called in boot image mode and onLoad
is only called when dynamically loaded, as per the specification for VM extensions. Since the VM is
still in PRIMORDIAL mode in onBoot the recommended idiom is to enable the VMINIT event and do
all further processing in the vmInit event callback, which is invoked (if enabled) in either case.

An example of a complete JJVMTI agent is the conversion of the native heap viewer agent that is
supplied as a demo with the JDK. This agent also demonstrates one of the meta-circularity issues with
JJVMTI. The heapIteration callback is not callback safe in JVMTI terminology, in particular,
it cannot allocate. However, when the agent is dynamically loaded, Maxine will attempt to allocate
implicitly as the heapIteration method will be compiled at the point that it is first invoked. This
is finessed by the agent by forcing the compilation of heapIteration in the vmInit method. Note
that this is not an issue if the agent is included in the boot image owing to ahead of time compilation. It
would also be mitigated if Maxine kept a separate VM and application heap.

7.27 The Maxine Inspector

The Maxine Inspector is the essential all-in-one companion tool for Open Source Maxine VM develop-
ment. It plays many roles:

• object, class, and method browser;

• code views include disassembled machine code, disassembled bytecode, and source;

• low-level debugger (imagine gdb or dbx) with visual displays of threads, registers, stacks, stack
frames, thread local values, breakpoints, memory watchpoints, etc.;

• intermediate representation debugger;

• source-level Java debugger (eventually); and

• serviceability agent (eventually).

This short (5 minute) 2009 video describes the goals of the inspector and highlights some of the ways in
which it makes Maxine VM development highly productive.

Please be aware that the Inspector is very much a work in progress, as is the Maxine VM itself. The
two have co-evolved and will continue to do so as the design of the VM matures and the concerns of the

7.27. The Maxine Inspector 107

https://youtu.be/ZOq2y5fTaHc

Maxine-VM Documentation, Release 2.6.0

developers expand. Functionality is constantly being improved and extended, so there are already places
where the current system differs from what you will find here.

More discussion and more detailed documentation follows below.

7.27.1 Goals

In addition to enhancing the productivity of our own development team, the Maxine Inspector is part of
our strategic goal of making VM experimentation more accessible to a wider audience. By leveraging
the meta-circularity of the VM itself (and sharing a great deal of the VM’s source code), the Inspector
makes it possible to visualize concisely many aspects of VM state that are elusive and widely distributed
in other systems. These same advantages also make it possible to debug the VM with a single tool,
highly specialized for this purpose.

7.27.2 Background and Rationale

Debugging virtual machines (VMs) presents unique challenges, expecially for a meta-circular VM, such
as Maxine, that is self-implemented in the same language it implements. Making sense of Maxine’s
runtime state requires interaction simultaneously at the source, bytecode, and machine code abstraction
levels, and it must leverage knowledge of the VM’s design. Specific issues include:

• Maxine VM code must be largely optimized statically, not only for ordinary performance reasons,
but also in order to be able to bootstrap the VM at all.

• Dynamic optimization at runtime can be applied to the VM’s own implementation, not just appli-
cation code.

• Mapping optimized code locations back to bytecode and source locations is not generally possible
without onerous limitations.

• Dynamically de-optimizing code for debugging can be effective for application code, but only
when the VM can be assumed correct.

• Debugging the VM itself, however, requires scrutinizing its lowest-level, most optimized code
representations and runtime machine state.

• Special considerations arise when debugging garbage collection, for example the Inspector’s de-
pendence on the VM’s meta-information about classes, methods, etc., which are represented as
ordinary Java objects in the heap; garbage collection, however, routinely breaks the heap invari-
ants that make those objects accessible.

• Good debugging support is paramount for a VM intended for experimentation and fast prototyp-
ing.

• The Maxine Inspector addreses these concerns, supporting comprehensive inspection and interac-
tion at all program representation levels.

• Finally, these services must be available to developers in a wide variety of contexts: examining
a pre-execution boot image, examining and controlling a live VM process (local or remote), and
post-mortem examination of a VM core dump.

Furthermore, the Inspector’s design exploits the fact that it is implemented in the same language that the
VM implements and is implemented in; this gives rise to many code reuse opportunities. For example,
the same mechanisms used by the VM’s boot image generator, which allow the creation of objects in

108 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

the binary runtime format for a potentially different platform, can be used by the Inspector to examine
binary runtime state for a potentially different platform than the Inspector’s host.

7.27.3 Downloading and Building the Inspector

The Inspector source code is part of the Maxine VM repository. It will download and build automatically
with the rest of the Maxine code. See also Inspector-specific issues on various platforms.

7.27.4 A Tour Through The Maxine Inspector

The best way to learn about the Inspector (and about many aspects of the Maxine VM) is to start up the
Inspector on a simple VM session. For a beginner’s introduction, however, the following pages introduce
specific aspects of the Inspector’s operation, in some cases with short video segments. The topics are
threaded in a sequence so that you can navigate through them in order if you are new to the Inspector.

Boot Image Configuration

A good introduction to some of the Maxine VM’s architectural features is provided by the Inspector com-
mand via the Boot Image info entry on any View menu. This produces an Inspector window displaying
configuration parameters of the boot image being inspected. The boot image and its configuration can
be inspected with or without a running VM process.

This short 2008 video demonstrates this view, although some evolution has taken place since then.

A more detailed description of the display appears below.

The Boot Image Inspector

The boot image contains several groups of configuration parameters, each of which relates to some
aspect of the Maxine implementation. The Boot Image Inspector displays them in a simple tabular
format, with entries in several general categories:

• Identification of the particular boot image build.

• Basic build options, e.g. DEBUG or PRODUCT.

• Target machine properties: the model, instruction set, word size, endianness, etc. for which code
is compiled, both in the boot image and at run time.

• Operating System properties.

• Maxine schemes: pluggable modules that implement specific functions in the VM. For example,
the grip scheme implements low level memory addressing, at which level garbage collection takes
place; the run scheme directs what happens at VM startup, which could be running a standard Java
program, as in the example, but could something else specified at build time.

• Parameters describing the boot heap: a pre-populated heap segment containing objects created at
build time, in the same format as the dynamic heap segments created at run time.

• Parameters describing the boot code region of memory, which contains compiled code in the same
format as the regions of compiled code that are created by dynamic compilation and recompilation
at run time.

7.27. The Maxine Inspector 109

https://youtu.be/Ieoqp5TUUJ4

Maxine-VM Documentation, Release 2.6.0

• Code entry pointers: specific addresses in the boot code region (displayed symbolically by the
inspector in the example) for distinguished methods that will be called at VM startup.

• Distinguished object pointers: specific addresses in the boot heap region for objects of importance
at VM startup, for example the root ClassRegistry object (displayed symbolically by the
inspector in the example).

110 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

7.27. The Maxine Inspector 111

Maxine-VM Documentation, Release 2.6.0

As with many data displays in the Inspector, the items in the Value column have additional useful
behavior. For example, most provide additional information about the displayed value in a mouse-over
“Tooltip” display that appears when the mouse hovers over the display. In simple cases, such as integers,
the Tooltip might display the value in another base. For example the page size item displays in decimal
by default, but the hexadecimal value appears in the Tooltip. Conversely, the boot heap size displays in
hexadecimal by default, and the decimal value appears in the Tooltip.

Any display item showing a memory value that could be interpreted as a pointer to a memory location
exhibits much more complex behavior, described in more detail in Memory Word Values. The Inspec-
tor investigates each of these values empirically to determine where such a value might point in the
VM’s current memory. In the displayed example, the value of the parameter boot heap start was
discovered to point at a heap object, presumably the first object in the region. Although displayed in
hexadecimal by default, the item is color coded green to reveal this fact, and an alternate display show-
ing information about the object (for example the class registry pointer) might also appear by
default.

Similarly, parameter named MaxineVM.run() was discovered to point to the compiled code for a
specific method, in this case evidently the correct one; in the example, these are displayed symbolically
by default. These display items also exhibit dynamic behavior in response to various mouse actions. For
more detail, see Memory Word Values.

An optional Memory Regions Column is available by selecting the View Options entry from the View
menu. This setting is persistent, and it can also be set as a User Preference.

Memory Word Values

Many Inspector views display values that represent the contents of a memory word in the VM. Such
words might contain primitive data values, but they also might contain addresses that point to other
locations in the VM’s memory such as heap objects and executable instructions. We call an Inspector
element that displays the contents of a memory word a Memory Word Value. For example, in the Boot
Image Inspector, shown here, of the parameter values in the lower part of the display are such Memory
Word Values.

112 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

7.27. The Maxine Inspector 113

Maxine-VM Documentation, Release 2.6.0

Memory Word Values are among the most important aspects of the Inspector, and they appear in almost
every kind of view. They exhibit a variety of useful behaviors, described on this page, designed to make
the Inspector as useful as possible.

Investigating memory references

A Memory Word Value is often bound to a specific word location in the memory of a running VM. After
each VM execution cycle, the Inspector “refreshes” every Memory Word Value, which causes the value
in each word to be from memory read again. Each time this happens, the Inspector attempts to relate the
value found to other information that is already known about the state of the VM.

In many cases the Inspector can determine by context that a particular word value ought to or might
point to some specific kind of location. In every case, however, the Inspector investigates the value of
the word and determines empirically whether the value points to some known part of the VM state; this
is essential for debugging the VM implementation, since those assumptions might not always hold.

Note that this investigation of memory word values can be suspended by turning off the persistent User
Preference Investigate memory references. This does not, however, prevent the value from being read
from memory at the conclusion of every refresh cycle.

Color-coding and mouse behavior

When a word value does not point to any known kind of location (for example the parameter boot
code end in the Boot Image Inspector), the value is simply displayed in plain hexadecimal (alternate
interpretations, for example decimal, are available in a mouseover Tooltip). When it does point to
contents of a known kind, the display exhibits complex visual and interactive behavior that reveals what
is known about the location to which the value refers. This list describes some of those behaviors:

• Color: The default display color of a Memory Word Value is black, but if something is learned
about where the value points the following color code reveals the kind of data to which the value
refers:

– green: points at a Heap Object.

– blue: points at a method entry for compiled Machine Code.

– pale blue: points into the interior of a method for compiled Machine Code.

– magenta: points into Thread Local Memory.

– red: points into memory not known to be in a Memory Region allocated by the VM.

• Numeric Display: A word of bits can be interpreted as several different types of numeric values.
For example, floating point register values being displayed in the Registers Inspector can be dis-
played in three different formats: hexadecimal, as a float value, and as a double float value. As
noted below, a mouse middle-click over such a Memory Word Value will cause it to cycle among
its possible display states.

• Symbolic Display: Some values that point to known kinds of information have two modes of
display: numeric and symbolic. The default mode depends usually on whether the Inspector
assumes from context that a particular value should point to something known. In the Boot Image
display, the parameter boot heap start is not assumed to point at anything in particular,
but the Inspector has discovered that it points at a heap object. On the other hand, the parameter
class registry is assumed to point to a heap object, so the default display mode is symbolic.

114 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

As noted below, a mouse middle-click over such a Memory Word Value will cause it to cycle
among its possible display states.

• Heap Object References: The symbolic display of a heap object reference (for example, the
value of the class registry parameter) begins with an integer ID for the object that is
unique for the duration of the inspection, followed by the type of the reference, displayed as
an unqualified class name. A variant display appears for objects of Maxine’s low-level imple-
mentation types: <Maxine role>(<java entity for which the object plays
this role>). Examples of such roles include Class Actor, Dynamic Hub, and Static Tuple.
When a heap object reference is being displayed in numeric mode, symbolic information is among
the extra information available as a Tooltip, and a mouse left-click will create a new Object In-
spector on the object.

• Machine Code References: The symbolic display of a word pointing at compiled machine code
is displayed (for Java methods) as the unqualified class name, followed by the method name,
followed by empty parentheses, followed by a compilation index in square brackets. The compi-
lation index identifies which of the potentially multiple compilations of the method contains the
reference location. When a machine code pointer is being displayed in numeric mode, symbolic
information is among the extra information available as a Tooltip, and a mouse left-click will
create a new Method Inspector on the object

• Left Mouse Button: A mouse left-click over a Memory Word Value creates an Inspector for what, if
anything, is pointed to by the value. If the value is a heap object reference, it creates a new Object
Inspector. If the value points into machine code, it creates a new Method Inspector displaying the
disassembled Machine Code.

• Middle Mouse Button: A mouse middle-click cycles among the display states of the Memory
Word Value under the mouse cursor.

• Right Mouse Button: A mouse right-click over a word value causes a menu of commands to be
displayed. Some entries in the menu are universal, for example Copy Word To Clipboard. When
display modes are available, the command Toggle Display Mode performs the same function as
a mouse middle-click. Commands are available that create a Memory Inspector at the location
specified by the word value. Yet other commands are sensitive to the particular kind of information
pointed to by the value, for example commands associated with Java methods or with Constant
Pool entries.

Tooltips

A “tooltip” is a display of a small amount of text that pops up temporarily when the mouse rolls over
display element. In the case of Word Value Labels, tooltips display several kinds of useful information
that complement the terse displayed text of the element. The duration of each tooltip’s appearance can
be controlled by the User Preference ToolTip dismiss.

Most Word Value Labels in Inspector views appear in tables, which have a “cell” on each row under
each column, and in these tables there is a strong convention for what tooltip text appears. The first line
of tooltip text usually identifies the particular row under the cursor, and in particular the VM entity that
is being portrayed by that row in the table. Examples include:

• Object header field "MISC"

• Instruction 4 "mov"

• Thread local "MUTATOR_STATE

7.27. The Maxine Inspector 115

Maxine-VM Documentation, Release 2.6.0

The remaining tooltip lines display additional information, possibly redundant, about the cell under the
cursor. For example, a cell in the Value column of an Object Inspector or Memory Inspector whose
memory word contains a Reference, displays both the address in hexadecimal and a short description
of the referred to object, whereas the table cell itself displays only one of these at a time, depending on
its display state. Furthermore, that tooltip also describes the memory region into which the Reference
points, something that is otherwise visible only by activating a separate column in the view.

Cells in a Name column add to the tooltip any of the short “description” strings associated with some
Maxine VM internal entities. For example, this string describes the purpose of a VM thread local, and it
appears with the tooltip over its name in the VM Thread Locals Inspector.

Cells in the Tag column of any memory-based Inspector view will display tooltip text (following the
line 1 descriptor) that describes

(a) the registers, if any, that point into the row’s memory region, (b) the watchpoints, if any, that are set
in the row’s memory region, and

(c) the watchpoint, if any, that is currently triggered on a location (specified) in the memory region.
Some of this information is redundant, since a special cell border reveals the presence of a watchpoint, a
special icon and color reveals the location of a triggered watchpoint, and the cell’s text lists any registers
pointing into the region. Some is not, however, for example the specific address information at which a
watchpoint trigger occurred; this information is otherwise only visible in the Watchpoints Inspector.

The specific kind of additional information that appears is quite dependent on context: on the particular
column (Value or Address), on an expectation about the value (e.g. “should contain a Reference”),
and the actual value discovered in VM memory. This overall approach is designed to offer:

• verbosity and redundancy for the beginner (and sometimes for the pro), and

• additional information for the pro, information that can reduce jumps to another view and reduce
the number of columns visible (which in turn frees visual space for other information).

Drag and drop

A Memory Word Value display can also act as the source of a Drag & Drop operation. If the value points
into a known region of memory, dragging the value away from the display and dropping it onto the
Inspector’s background window will produce a Memory Inspector whose display begins at that address.

The Memory Inspector

Most of the views provided by the Maxine Inspector display something about the state of the VM that has
been read from memory as raw bytes and then been interpreted in useful terms, based on the Inspector’s
embedded knowledge of the VM’s design. Many such views are described in subsequent sections.

Sometimes, however, it is important to display memory at a very low level, without assumptions about
content, and the Maxine Inspector offers low-level views for this purpose.

default “Word” mode

An Inspection session can contain any number of Memory Inspectors. The default behavior of a Memory
Inspector is demonstrated by the example to the right. The specified range of memory being displayed
appears in the window header, along with the name of the allocated Memory Region in which the first

116 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

word lies. The memory in the specified range appears, grouped by word, one word per row, using the
default columns that appear in the example:

• Tag column: a place where additional information about the memory word can be displayed. For
example it displays the names of any registers in the currently selected thread that point at the
location. The Tag column also highlights any word where a Watchpoints is set. Many Inspectors
have a similar Tag column.

• Addr. column: the location of the first byte in the word, expressed as a hexadecimal memory
address.

• Offset column: the location of the word, specified as the number of bytes offset (either positive or
negative) from the current origin of the Inspector (more about the origin follows below}.

• Value column: The contents of each word are read from the VM memory each time the VM halts.
The values are displayed with numerous visual and interactive behaviors that depend on the value
and the context of their appearance. See Memory Word Values for details.

• Region column: displays the name of the Memory Region, if any, into which the value currently
stored in the word points. See Memory Regions Column.

A Memory Inspector can be created in several ways:

• The Inspect memory at address. . . entry in the standard Memory menu brings up a dialog in which
a starting address for a new Memory Inspector may be entered.

• The Inspect this object’s memory entry in the Memory menu appearing on any Object Inspector.

• Clicking on the Create cloned copy. . . button in the tool bar of any existing Memory Inspec-
tor; this creates a new Memory Inspector whose location is identical to the original, but whose
subsequent behavior is independent of the original.

• Dragging any Memory Word Value to the Inspector’s background; if the value can be interpreted
as a memory location known to be allocated, a new Memory Inspector will be created started at
that location.

• Dragging the display of any Memory Region name (for example, any name displayed in a Memory
Region Column) to the Inspector’s background; a new Memory Inspector will be created whose
display spans the entire region.

7.27. The Maxine Inspector 117

Maxine-VM Documentation, Release 2.6.0

Note that the Memory Inspector depicted in this example is currently in Word mode, as indicated by
the pull-down selector in the Inspector’s tool bar. In this mode the Back and Forward arrow buttons
serve to relocate the viewing region of the Memory Inspector forward or backward one word at a time.
The operation of the arrow buttons in other modes (Object and Page modes) is discussed in subsequent
sections. Navigation also takes place in response to the scroll bar and by resizing the window.

origin

Every Memory Inspector maintains a current origin at all times; this is a word-aligned memory address
from which the locations displayed in the Offset column are computed. When a Memory Inspector is
created, the origin is set initially to the first word of the memory being displayed, but the location of the
origin is thereafter unconstrained. Commands in the Memory Inspector’s View menu, or direct editing
of the Origin field, allow the origin to be set elsewhere.

In this example, the displayed memory region is the same as the previous example, but the origin has
been set to a location in the middle of the displayed region.

This example also shows the graphical separators that are applied by the Memory Inspector whenever it
discovers Heap Object boundaries in VM memory.

“Object” mode

Navigation in the Memory Inspector is modulated by the mode currently selected via a pull-down selec-
tor in the Inspector’s tool bar, located between the Back and Forward arrow buttons.

118 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

In this example the mode is set to Object, which causes the Back and Forward buttons to move
backward and forward one object at a time, assuming any objects can be located. Each Object-mode
move resets the Inspector’s origin to the first word of the object’s representation and scrolls until that
position is in the first viewing position.

These moves do not change the size of the region being displayed, nor do they cause the window to
resize around the current object being displayed.

“Page” mode

Navigation in the Memory Inspector is modulated by the mode currently selected via a pull-down selec-
tor in the Inspector’s tool bar, located between the Back and Forward arrow buttons.

In this example the mode is set to Page, which can be very helpful when working on page-based
mechanisms in the VM, for example garbage collection. In this mode the size of the region is constrained
to equal the page size of the platform, and the origin is constrained to location at page boundaries.
Navigation via the Back and Forward buttons relocates the viewing region by one page per click.

7.27. The Maxine Inspector 119

Maxine-VM Documentation, Release 2.6.0

Manually changing either the Origin or Words size fields causes the mode to revert to Word.

View options

The Memory Inspector provides a number of options for displaying word contents under different inter-
pretations, available via the View Options entry in the Inspector’s View menu. The options dialog can
also be invoked by clicking on the rightmost button in the tool bar.

In the example below, all optional columns are displayed. Each column displays the memory contents
under a different interpretation: as Bytes, as Chars, as Unicode, as a single-precision Float, and as a
Double-precision float.

The Memory Bytes Inspector

There are times when low-level memory inspection in terms of words, the only mode supported by
the standard Memory Inspector described above, is not flexible enough for the task at hand. In these
situations the Memory Bytes Inspector, shown in the example to the right, offers a much more flexible
alternative.

This Inspector can be configured to display memory at any location (address, length), and can display
memory in any grouping of bytes.

120 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

In the special case where bytes appear in groups of 1, as in the example, each byte is also interpreted as
an ASCII character. In the special case where bytes appear in groups of 2, each group is also interpreted
as a UNICODE character.

In the special case where the address of a byte group is determined empirically to be a valid reference to
either a heap object or code, this information can be displayed symbolically. In the example at the right,
the Memory Bytes Inspector has observed that the address of the first group points to an object and has
color coded the display to indicate that. See Memory Word Values for more details.

A Memory Bytes Inspector can be created in several ways:

• The Inspect memory bytes at address. . . entry in the standard Memory menu brings up a dialog
in which a starting address for a new Memory Bytes Inspector may be entered.

• The Inspect memory at Origin as bytes entry in the View menu appearing on any Memory Inspec-
tor.

• A right mouse-click over the Tag column in most memory-based views will produce a popup
menu, one entry of which is Inspect this memory as bytes.

Memory Regions

The Maxine VM allocates memory in regions dedicated to various subsystems. These regions are given
names for the purposes of inspection, and the Inspector provides two mechanisms for observing this
aspect of of the VM’s runtime state: the Memory Regions Inspector and the Memory Regions Column,
which can be optionally displayed with many of the other Inspector Views.

The Memory Regions Inspector

The Memory Regions Inspector displays a tabular summary of every currently allocated region of mem-
ory in the running Maxine VM, with the following columns displayed by default:

• Tag: a place where additional information about the memory region can be displayed. In the
example to the right the Tag entry in the second row notes that register R14 currently points into
the region Thread-2 Locals. The Tag column also highlights any memory region where one
or more Watchpoints are set. Many Inspectors have a similar Tag column.

• Name: a human readable name that describes its purpose. In the example the two regions named
Heap-Boot and Heap-Code are preconfigured as part of the binary boot image (see Boot Image
Inspector), each in the runtime format of the dynamic heap and code regions respectively. Ad-
ditional regions are allocated dynamically for code compiled at run time, for example the region
named Code-Runtime. Specific heap implementation allocate memory according to a garbage
collection scheme, for example the Heap-From and Heap-To regions allocated by a semi-space
collector. Finally, a region of memory for the VM’s internal Thread Local Storage is allocated for
each thread, named after the particular thread’s ID.

• Start, End: location of the region, expressed as hexadecimal memory addresses.

• Size: number of bytes contained in the memory region, expressed by default in headecimal, but
with additional formats available in mouseover Tooltip text.

• Alloc: the percentage of the region that has actually been used by the particular subsystem owning
the region, if this can be determined.

7.27. The Maxine Inspector 121

Maxine-VM Documentation, Release 2.6.0

In the special case where a Start or End address is determined empirically by the Inspector to be a
valid reference to known kinds of information, this information can be displayed symbolically. In the
displayed example, the addresses colored green have been determined to point at heap objects, and
the addresses colored magenta have been deteremined to point into thread local storage. Additional
behaviors are available at such address display: mouseover Tooltips, mouse left-click, and mouse right-
click (all of which are described in more detail in the field values section for Heap Objects).

Dragging a hexadecimal address from the Start or End columns onto the Inspector background causes
a Memory Inspector to be created starting at that location and having a small default display span.
Dragging a name from the Name column causes a Memory Inspector to be created whose span is the
entire extent of the region.

The Memory Regions Column

Most Inspector views offer multiple columns of display information, only a few of which may be visible
by default. The View Options menu item, available in the standard View menu, allows user selections of
visible columns. This setting is persistent, and it can also be set as a User Preference.

122 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

7.27. The Maxine Inspector 123

Maxine-VM Documentation, Release 2.6.0

Every Inspector that display memory values of any kind offers an optional column with the title Region.
In the example to the right, the Registers Inspector is shown with the Memory Regions Column visible.

The Memory Regions Column display is based on a Memory Word Value associated with the particular
row. If the Word Value is determined to point to a valid location somewere in the runtime state of the
VM, the name of the memory region into which it points is displayed. If the Word Value does not point
into a valid memory location, or if it is a different kind of value display, then the The Memory Regions
Column is blank.

In the example several of the Word Values point to heap objects: some to objects in the Boot Heap
memory region (see Boot Image Inspector), and some to the dynamic heap region Heap-To allocated
by the semi-space garbage collector, one of several implemented in the Maxine VM. Some values point
into the VM’s allocation for particular threads. Finally, the RIP register, which is assumed to point into
executable code, does indeed point into a compiled method, as shown by the display in symbolic mode.

Dragging a hexadecimal address from the Value column onto the Inspector background causes a Memory
Inspector to be created starting at that location and having a small default display span. Dragging a name
from the Region column causes a Memory Inspector to be created whose span is the entire extent of the
region.

Heap Objects

A Maxine Object Inspector displays the contents of a single heap object as a sequence of name/value
tuples with additional display options. Variant object representations in the VM are displayed with
slightly different kinds of Object Inspectors: tuples (ordinary objects), arrays, and a special hybrid object
used in the VM implementation that cannot be expressed as a Java type. Furthermore, certain common
types can be displayed in multiple modes, for example the contents of a char[] might alternately be
displayed as a string.

View a short demo here, or see below for examples and discussion of the heap object inspector’s behav-
ior.

Note that the design of Heap Object Inspectors has changed since the demo video. There are many
additional display features and options.

Inspecting tuple heap objects

Ordinary objects are referred to as Tuples in the Maxine VM implementation The first example
window at the right displays the contents of a simple object of type com.sun.max.vm.heap.
BootHeapRegion. The object is visualized as a simple list of Field/Value tuples. In this example, all
other view options for the objects are turned off.

124 Chapter 7. Table of Contents

http://en.wikipedia.org/wiki/Cheney%27s_algorithm#Semispace
https://youtu.be/kMo1-zBQh28

Maxine-VM Documentation, Release 2.6.0

A basic Heap Object Inspector such as this one displays the following elements of a tuple:

• Title Bar: The window frame displays a compact string identifying the object: absolute address in
memory, an integer ID for the object that is unique for the duration of the inspection, followed by
the type of the object (as an unqualified class name) and the Memory Region in which it resides.

• Menu Bar: The Standard Menus relevant to the Object Inspector.

• Tag column: The Inspector annotates each field with meta-information that may relate to other
aspects of VM state or to the interactive state of the inspection session. For example, an annotation
lists the names of all machine Registers in the currently selected thread that point at the location
represented by the row. A graphical annotations marks the locations of active Watchpoints for
debugging. A mouse double-left-click in the Tag column toggles on and off the watchpoint at the
specified location. A mouse right-click in the Tag column displays a menu of actions relevant to
the specific memory location.

• Field column: All fields in the object, local or inherited, appear one per row, with the unqualified
field name appearing in this column. A mouseover Tooltip reveals the type of the field and the
class in which it is declared; both names in the ToolTip are fully qualified.

• Value column: The contents of object fields are read from the VM memory each time the VM
halts. The values are displayed with numerous visual and interactive behaviors that depend on the
value and the context of their appearance. See Memory Word Values for details.

Ordinary Java object, such as the one in this example, are represented in the Maxine VM heap as Tuples.
There are two other general kinds of objects in the Maxine heap, for which Object Inspector behavior
differs somewhat, as described below: Arrays, corresponding to ordinary Java arrays, and Hybrids, types
specialized for the Maxine VM implementation that do not correspond to any Java type.

Object Inspector view options

View options are available available by selecting the View Options entry from the View menu. A dialog
permits the request for additional kinds of information, either for the current Object Inspector only or for
all subsequently created Object Inspectors. The setting for all subsequently created Object Inspectors
is persistent, and it can also be set via the Preferences action (see User Preferences). The following
example displays a heap object of type BootHeapRegion with all view options turned on.

7.27. The Maxine Inspector 125

Maxine-VM Documentation, Release 2.6.0

This example displays the same object as the previous example, but with every kind of optional view
information enabled. These are listed below, not including the basic display features already described
above.

• Object header: The Maxine VM implementation of heap objects adds an additional two or three
fields in the object representation’s header. In the case of simple objects such as this one, the
two fields include a reference to the Maxine information (represented as Java objects) concerning
the class of the object, followed by a word of bit fields used for a variety of purposes, including
locking. A third, when present, specifies the length of the array part of an object (see Array
Objects) and Hybrid Objects below).

• Addr. column: displays the absolute current location of the field in VM memory, which may
change when the heap is managing by a copying garbage collector. A mouseover Tooltip over
this column displays the field’s offset from the beginning of the object, the same information
displayed in the Offset column. A mouse right-click over an address produces a menu with stan-
dard commands for copying the value onto the clipboard and creating a Memory Inspector at this
location.

• Offset column: displays the field’s location relative to the origin of the object, where the object
layout is determined by a Maxine scheme. In this example, the object layout assigns the origin
to memory location 0 in the representation of the object. A moueover Tooltip displays the field’s
absolute memory location, the same information displayed in the optional Addr. column. A mouse
right-click over this column produces a menu with standard commands for copying the value onto
the clipboard and creating a Memory Inspector at this location.

• Type column: displays the Java language type of the value, expressed as either Java primitive type
names or unqualified Java class names. Mouseover Tooptips display symbolic information about
the Maxine implementation of the type. A mouse right-click produces a menu of commands for
inspecting Java objects related to the Maxine implementation of the type.

• Region column: displays the name of the Memory Region, if any, into which the value currently
stored in the field points. See Memory Regions Column.

Dragging a hexadecimal address from the Addr. column onto the Inspector background causes a Memory
Inspector to be created starting at that location and having a small default display span. Dragging a name
from the Region column causes a Memory Inspector to be created whose span is the entire extent of the
region.

126 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Arrays

The Object Inspector displays slightly different information for objects that the VM uses to represent
Java arrays, as shown in the example. This Inspector displays an integer array of length 11; a scroll bar
would appear when array length exceeds the size of the view window.

Array values are displayed exactly as for field values in ordinary tuple objects: as Memory Word Values.
In the example, the values are references to objects of type MethodActor.

This display differs from an ordinary Tuple Object Inspector in two ways. First, the object header
contains a third field that holds the length of the array. Second, the Field column identifies the index of
each array element.

A mouse double-left-click in the Tag column sets a watchpoint at the specified array element.

Other than the object header, all view options are turned off in this display. Standard view options are
available for Addr., Offset, Type, and Region column. These options are similar to the View Options
available for ordinary tuple objects and are available under the View Options entry in the View menu.

An additional view option is available for array objects: suppressing the display of null elements,
where the definition of null depends on the particular element type. This can greatly improve visual-
ization of sparsely populated arrays.

Hybrid objects

For performance reasons, the Maxine VM stores much of its class-specific implementation metadata in a
special kind of heap object that has no counterpart in the Java language. These objects are hybrids: they

7.27. The Maxine Inspector 127

Maxine-VM Documentation, Release 2.6.0

contain fields, as with an ordinary tuple object, but they also contain arrays dedicated to implementation
data that must be efficiently accessed when examining the representation of an object.

128 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

7.27. The Maxine Inspector 129

Maxine-VM Documentation, Release 2.6.0

Each ordinary object’s header, as shown in earlier examples above, contains a pointer to the object’s
Hub, which is implemented in the heap as a Maxine hybrid object. The example shown to the right
is a hybrid object representing the Dynamic Hub for objects of type java.lang.String. Every
String object in the heap contains a pointer to this hub.

Each class at runtime also contains static values, represented as an object of the special type StaticTuple,
whose metadata is contained in an object of type StaticHub, also represented as a hybrid object.

Note in passing the following circularity: the Hub pointer of a DynamicHub points to the
DynamicHub for class DynamicHub.

Reflecting the complexity of hybrid objects, the Object Inspector displays a hybrid as a collection of
segments, each with different kinds of information.

• As with Array Objects, hybrids contain a word in the header that contains the total length of the
array part of the object.

• As with Tuple Objects, hybrids contain named fields, displayed in the fields segment of the Object
Inspector.

• The array segment of a hybrid us used to represent four kinds of information, and the Object
Inspector displays each separately: vTable, iTable, mTable, and Reference Map. Each
array segment behaves as for Array Objects.

• Each array segment is individually scrollable, and each can be either displayed or hidden by using
checkboxes at the beginning of the Object Inspector.

Specialized Object Inspectors

The Object Inspector can be specialized by adding alternate displays for heap objects of particular types.
Several are currently in place, most of which display a textual summary of the object’s contents.

In two examples shown, a char array is shown to have such a specialized alternate configured, evident by
the appearance of window tabs that select the display. The standard array display appears in the upper
example, while the textual summary appears in the lower example.

130 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Object view canonicalization

In ordinary operation, the Inspector creates at most one Object Inspector per unique object in the VM’s
heap. A user request to view an object, for example by clicking on a value field that points at an object
(see [Memory Word Values|Inspector-Memory Word Values), will cause a new Object Inspector to be
created only if one does not already exist; if one does exist, it is simply brought forward and into full
view. The determination is made by comparing the memory location of the two potentially identical

7.27. The Maxine Inspector 131

Maxine-VM Documentation, Release 2.6.0

objects.

In some situations, however, especially during garbage collection, the Inspector may not be able to make
this determination identity correctly. For example, a relocating garbage collector may create a copy of
an object’s representation, and this relationship may not be detectable immediately. The Inspector is
designed to sort this out as much as possible, most importantly by stopping the VM at the conclusion of
each GC cycle and reviewing reviewing for duplications its table of VM heap objects.

This is work in progress, and the Inspector may not always get identity sorted out correctly in every
situation for every implementation of garbage collection.

Machine Code

A Maxine Method Inspector displays code associated with a method body in several ways. Here we
show how machine code can be disassembled and displayed with useful interactive behavior.

View a short demo here, or see below for a discussion and screen snapshots of the Machine Code
Inspector

Note that the design of Method Inspectors has changed somewhat since the demo video.

Method Inspector with machine code

The first example shows a Method Inspector displaying the disassembled machine code for the Java
method com.sun.max.vm.MaxineVM.run(), which is called by the VM at the conclusion of the
startup sequence. Display features include:

• A tab that distinguishes the method inspector from others in a “tabbed window”;

• A window header that identifies the method in detail (which information is also available on the
tab as a mouseover Tooltip);

• A suffix to the name that identifies the specific compilation of the method; in the example the
suffix “0” identifies the machine code as the first entry in the method’s compilation history;

• A number of command buttons for Debugging;

• A dialog for setting view options, available from the View. . . button, in which specific display
columns can be selected or deselected (the next example shows all columns);

• A Tag column that displays markers related to Debugging, such as the triangular symbol for the
current Instruction Pointer in the first row of the example;

• A Label column that displays symbolic labels generated by the disassembler; information about
the actual location in memory is available as a mouseover Tooltip in this column, and a menu of
commands related memory locations is available via mouse right-click over this column;

• An Instruction column displaying mnemonic machine operations, as configured for the target
instruction set; and

• An Operands column displaying mnemonics for machine code operands, as configured for the
platform instruction set; in the special case where memory addresses appear in machine code
operands, the inspector empirically determines whether the address points at a heap object or code
entry, and if so, displays that information symbolically; additional display and interactive options
are available over such references, as described in the Field Values section in Heap Objects.

132 Chapter 7. Table of Contents

https://youtu.be/zkcPPkO7N5o

Maxine-VM Documentation, Release 2.6.0

Optional display columns

The second example window shows the same method inspection as the first, but with all possible
columns selected for view. The addtional columns include:

• An Address column displaying absolute memory location of the code, which information is also
available via mouseover Tooltip on the Label column;

7.27. The Maxine Inspector 133

Maxine-VM Documentation, Release 2.6.0

• A Position column displaying memory location as a byte position relative to the beginning of the
method, which information is also available via mouseover Tooltip on the Label column; and

• A Bytes column that displays each instruction in raw bytes.

Bytecode

A Maxine Method Inspector displays the code in a method body in several ways. Here we show how
Java bytecode can be disassembled and displayed with useful interactive behavior.

View a short demo here, or see below for a discussion and screen snapshots of the Bytecode Inspector.

Note that the design of Method Inspectors has changed somewhat since the demo video.

Method Inspector with bytecode

The first example shows how the Method Inspector displays disassembled bytecodes for the Java method
com.sun.max.vm.MaxineVM.run(), which is called by the VM at the conclusion of the startup
sequence. Display features include:

134 Chapter 7. Table of Contents

https://youtu.be/Z80MQhKmxVo

Maxine-VM Documentation, Release 2.6.0

• A tab that distinguishes the method inspector from others in a “tabbed window”;

• A window header that identifies the method in detail (which information is also available on the
tab as a mouseover Tooltip);

• A number of command buttons for debugging;

• A dialog for setting view options, available from the View. . . button, in which specific display
columns can be selected or deselected (the next example shows all columns);

• A Tag column that displays markers related to debugging, such as instruction pointer, call return
site, and breakpoint;

• A Position column that displays the byte offset at the beginning of each instruction, relative to the
beginning of the code block;

• An Instruction column displaying the mnemonic name of each bytecode instruction, as defined by
the specification for the Java Virtual Machine; and

• Two Operand columns displaying bytecode operands in a format based loosely on the examples
in the book The Java Virtual Machine Specification and on the output of the command line disas-
sembler javap; bytecode operands identifying constant pool entries that reference Java language
objects are displayed symbolically, and the displays have useful display and interactive behavior;
for example, a mouseover Tooltip displays the full Java description for the reference and identifies
whether the reference has been resolved.

7.27. The Maxine Inspector 135

Maxine-VM Documentation, Release 2.6.0

Optional display columns

The second example window shows the same method inspection as above, but with an additional column
selected for view:

• A Bytes column displays each instruction in raw bytes.

136 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Multi-code Method Views

A Maxine Method Inspector displays the code in a method body in several ways, and can do so in more
than one way simultaneously. Here we show how machine code and bytecode for a method body can be
viewed together.

View a short demo here, or see below for a discussion of the combined method views.

Note that the design of Method Inspectors has changed somewhat since the demo video.

7.27. The Maxine Inspector 137

https://youtu.be/w3wtObfMxd4

Maxine-VM Documentation, Release 2.6.0

Method Inspector with machine code and bytecode

The example below shows the same method used in previous examples: Java method com.sun.max.
vm.MaxineVM.run(), which is called by the VM at the conclusion of the startup sequence. In
this view, both machine code and bytecode have been enabled, managed via the menu available on the
triangle at the upper left corner of the Method Inspector.

It is possible to debug in a multi-code method view. When a reliable map between machine code and
bytecode locations is available (currently true only for the Maxine VM’s template-based JIT compila-
tions), the Instruction Pointer location will be visible in both views and will track correctly during single
stepping. Breakpoints can be set in either code view, although the detailed behavior of the breakpoints
may differ in some situations.

[STRIKEOUT:A third option, to display source code, will be added.]

Threads

The Threads Inspector is one of the Maxine Inspector’s tools for examining machine state during execu-
tion of the Maxine VM. It also serves to change the focus of other, thread-specific views in the Inspector:
Thread Locals, Registers, and Stacks.

View a short demo here, or see below for a discussion and screen snapshot of the Threads Inspector.

Note that the design of the Thread Inspector has changed somewhat since the demo video.

138 Chapter 7. Table of Contents

https://youtu.be/Ar23wSORs-Q

Maxine-VM Documentation, Release 2.6.0

The Threads Inspector

The Threads Inspector displays a table of basic information about each thread that exists in the VM
process, including by default the following columns:

• ID: a numeric identifier associated with the native thread in the underlying OS.

• Handle: a numeric identifier associated with Java threads managed by the Maxine VM.

• Kind: a string identifying the kind of thread, for example “Java” for threads created and managed
by the VM, “primordial” for the the special native thread used to bootstrap the VM, and no name
for other native threads.

• Name: a human-readable string assigned by the VM to describe the role of the thread, for exam-
ple those showing in the window include the main Java thread, Java utility threads for reference
management and finalization, and the special native thread used to bootstrap the VM which we
call the “primordial” thread.

• Status: describes what is known about the state of the thread, for example “Suspended” or at
“Breakpoint”.

Aside: There is no thread in a Maxine VM that either runs or supports the Maxine Inspector, a crucially
important design decision for enabling the debugging of low level VM mechanisms. The Inspector runs
in a separate process and communicates with the VM process in an OS-specific fashion, for example via
“libproc” in Solaris.

The current thread selection

A mouse left-click on one of the rows causes the displayed thread to become the “current thread se-
lection” shared by all tools in the Inspector (see User Focus). Several Inspector views display thread-
specific information, based on the current thread selection: the Thread Locals Inspector, the Registers
Inspector, and the Stack Inspector. Furthermore, most memory-based views contain a Tag column in
which each row may contain the name of any registers for the currently selected thread that point into
the memory designated by the row.

7.27. The Maxine Inspector 139

Maxine-VM Documentation, Release 2.6.0

Thread Locals

The Maxine VM allocates an internal Memory Region for each Thread that is used to store implemen-
tation data that is private (or “local”) to the threads implementation. This storage is not to be confused
with thread-local storage provided as part of the Java programming model.

140 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

7.27. The Maxine Inspector 141

Maxine-VM Documentation, Release 2.6.0

The VM’s Thread Local Variables for the currently selected thread (see Threads) are displayed by the
Thread Locals Inspector, as shown in the example to the right. These variables are part of each thread’s
internal implementation, in the form of word-length name-value pairs described by default with the
following columns:

• Tag: as with other memory-related views, the Tag column displays the names of any registers
for the currently selected thread that currently point at the row’s memory location, as well as the
possible presence of a Watchpoint. A mouse double-left-click in the Tag column sets a watchpoint
at the specified location.

• Pos.: the offset of the local variable slot from the beginning of the variable set, specified in bytes.

• Field: the name by which the VM’s internal implementation knows the particular thread-local
variable. A mouseover Tooltip displays a documentation string, specified in the VM’s implemen-
tation, that describes the role of the variable in human-readable form.

• Value: the current contents of each word using techniques described elsewhere (see Memory Word
Values).

The selection of visible columns can be selected using a dialog created by the View Options entry in the
Inspectors View menu. Additional columns available include Address and the standard Memory Region
Column.

Note that the Maxine VM implementation maintains three copies of the thread locals, identified by the
three tabs that select which one to view: TRIGGERED, ENABLED, or DISABLED.

Registers

The Registers Inspector is one of the Maxine Inspector’s tools for examining machine state during exe-
cution of the Maxine VM.

View a short demo here, or see below for a discussion and screen snapshot of the Registers Inspector.

Note that the design of the Registers Inspector has changed since the demo video. Most significantly, is
no longer possible to set the current thread selection from the Registers Inspector; the tabs at the top of
the view have been removed. Thread selection is now done only from the Threads Inspector.

142 Chapter 7. Table of Contents

https://youtu.be/KXNwJy1VidA

Maxine-VM Documentation, Release 2.6.0

7.27. The Maxine Inspector 143

Maxine-VM Documentation, Release 2.6.0

The Registers Inspector displays the register contents in the VM for the thread that is currently selected
in the Threads Inspector. The name, ID, and state of this thread appear in the title bar of the Registers
Inspector window.

The Registers Inspector displays a list of name/value tuples, described by the following columns that
appear in the example to the right:

• Name: a string identifying the register, derived from an architectural description of the target
machine for which the VM was built.

• Value: the current contents of the registers, refreshed by reading from the VM process each time
the VM halts. Number-valued register values are displayed with numerous visual and interactive
behaviors that depend on the value, as described elsewhere (see Memory Word Values).

• Region: the standard, optional Memory Region Column, which identified the known memory
region, if any, into which the current register value points.

When a register changes value after a VM execution (either by single step or by running to a breakpoint),
attention is drawn to that register in this Inspector by coloring the Name in red. With each successive
execution of the VM, as the value ages, the register name migrates from red, though magenta, then blue,
and finally black.

A mouse middle-button click over one of the values in XMM registers cycles the Value display through
three modes: hexadecimal, single-precision float, and double-precision float; (see Memory Word Values).
Since the VM only uses the lower 64 bits of XMM registers, the inspector display only this part.

The selection of visible columns can be made using a dialog created by the View Options entry in the
Inspectors View menu. Additional columns available include Address and the standard Memory Region
Column.

Stacks

The Stack Inspector is one of the Maxine Inspector’s tools for examining machine state during execution
of the Maxine VM.

View a short demo here, or see below for a discussion and screen snapshot of the Stack Inspector.

Note that the design of the Stack Inspector has changed since the demo video. Most significantly, it is
no longer possible to set the current thread selection from the Stack Inspector; the tabs at the top of the
view have been removed. Thread selection is now done only from the Threads Inspector.

The Stack Inspector displays the stack and currently selected stack frame in the VM for the thread that
is currently selected in the Threads Inspector. The name and status of this thread appears in the title bar
of the Stack Inspector window.

144 Chapter 7. Table of Contents

https://youtu.be/cveHrtXUhug

Maxine-VM Documentation, Release 2.6.0

Each Stack Inspector displays several kinds of information:

• The Memory location of the stack is expressed at the top of the display as a start memory address,

7.27. The Maxine Inspector 145

Maxine-VM Documentation, Release 2.6.0

expressed in hexadecimal, and size in bytes in the VM.

• The middle of the display lists the stack frames currently on the stack, identified by unqualified
method name and compilation sequence identifier. The currently active method appears at the
top; native code about which nothing is known is identified by memory address of the entry. The
stack can have a single selected frame, HelloWorld.main()0 in the example, selected with a
mouse left-click over the list entry.

• The bottom pane of the display describes the currently selected stack frame, including a list of
slots contained in the frame.

Selecting a stack frame causes it to become the currently selected stack frame (see User Focus). It has
the side effect of creating a Method Inspector for the method with a Machine Code view, a Bytecode
view, or both, depending on user preferences and availability of the two representations.

The currently selected stack frame

The contents of the currently selected stack frame appear at the bottom of the view, beginning with
specific information concerning the size of the frame and certain key pointers: FP, SP, and IP. Below
those appears a list of the stack slots in the frame, described by default using three columns:

• Tag: as with Tag columns in other Inspectors, lists any registers in the currently selected thread
that point at this location, along with a possibly set Watchpoint. A mouse double-left-click in the
Tag column sets a watchpoint at the specified location.

• Name: a symbolic name of the slot, derived from internal descriptions of the frame layout.

• Value: the current value in the memory location, refreshed from VM memory after each execution;
displayed with numerous visual and interactive behaviors that depend on the value, as described
elsewhere (see Memory Word Values).

The selection of visible columns can be made using a dialog created by the View Options entry in the
Inspectors View menu. Additional columns available include Address, Offset, and the standard Memory
Region Column.

Breakpoints

Debugging with the Maxine Inspector is facilitated by a polymorphic approach to code breakpoints that
is still very much under development. Just as code can be viewed in more than one way (Machine Code,
Bytecode, and eventually source code - see Multi-code Method Views, debugging will likewise be carried
out in terms of more than one level of code view.

View a short 2008 demo here, or see below for a discussion and screen snapshot of the Breakpoints
Inspector.

Note that the design of the Breakpoints Inspector has changed somewhat since the demo video.

146 Chapter 7. Table of Contents

https://youtu.be/Gneh5xl1eoM

Maxine-VM Documentation, Release 2.6.0

The Breakpoints Inspector lists all breakpoints that exist in the current session and displays their status,
by default with the following columns:

• Tag: specifies whether the breakpoint is expressed in terms of a machine code (method compila-
tion) location in memory (“T”) or as a bytecode location (“B”). The implementation of bytecode
breakpoints is incomplete at this time, and source code breakpoints are not yet supported. The
column also displays a pointer at the breakpoints, if any, that currently have blocked a thread.

• En: a checkbox that can be used to enable/disable a specific breakpoint.

• Description: identifies the Java method in which the breakpoint is set, and a mouseover Tooltip
provides more detailed information.

• Locn: describes the position in the method code at which the breakpoint is set, expressed in bytes
from the method entry. A value of -1 denotes abstractly the entry of a method, even if little about
the method is known.

• Condition: an editable field in which an expression can be supplied that makes the breakpoint
conditional, supported at present only for machine code breakpoints

• Thread: identifies a thread, if any, that is currently stopped at the breakpoint.

A mouse left-click over a row in the Breakpoints Inspector causes it to become the currently selected
breakpoint (see User Focus). It has the side effect of making the breakpoint’s code location visible in
a Method Inspector showing the appropriate kind of code (machine code or bytecode); it also selects
the instruction at that location. A special colored box appears in the Tag column of a code view at the
location of a breakpoint.

Setting breakpoints

The Maxine Inspector provides a number of ways to set and clear (delete) breakpoints:

• commands on the standard Debug menu;

• commands in the Edit menu on the Breakpoints Inspector’s menu bar;

• debugging command buttons on Method Inspector code views (for example mouse left-double-
click over a code instruction; and

• by keyboard shortcuts.

The semantics of machine code and bytecode breakpoints differ, most notably because there can be 0, 1,
or many compilations of a single method. A machine code breakpoint is anchored at a specific memory

7.27. The Maxine Inspector 147

Maxine-VM Documentation, Release 2.6.0

location in the code region, and is thus in effect for only that specific compilation, whereas a bytecode
breakpoint should in principle be in effect for every compilation of the method, current and future.

Breakpoints persist across sessions as long as the same boot image is being used; that restriction may be
eliminated in the future for some kinds of breakpoints.

Watchpoints

Debugging with the Maxine Inspector is facilitated by a watchpoint mechanism, supported on some
platforms, that is currently under development. It is possible to place watchpoints that catch reads
and/or writes and/or executions taking places at specified memory locations.

Because debugging in the presence of relocating Garbage Collection is especially problematic, the In-
spector’s watchpoint mechanism supports specific features above and beyond conventional watchpoint
behavior:

• a watchpoint may be specified either in terms of an absolute memory location (the conventional
mode) or in terms of a specific object and its fields. The latter are known as Maxine object watch-
points, and they will be automatically relocated by the Inspector when the object’s representation
in VM memory is relocated by GC.

• a watchpoint may be configured to be either active or inactive during execution periods when GC
is underway; this can help suppress spurious watchpoint triggers caused as a side effect of ordinary
rearrangement of memory by GC.

The Watchpoints Inspector lists all watchpoints that exist in the current session and displays their status,
as shown in the following example.

The columns visible in this example include:

• Tag: displays a red pointer at the watchpoint, if any, that has blocked a thread.

• Start: the VM memory address at which the watchpoint starts.

• Size: the amount of memory in bytes covered by the watchpoint.

• Description: a string describing how the watchpoint was created:

– “watchpoint region” if set only at a specified memory location, or

– containing a description of an object if set on one or more fields of an object; in this case the
location of the watchpoint will be updated automatically whenever the representation of the
object is moved in VM memory by GC.

• R: a checkbox controlling whether the watchpoint should trigger when the memory location is
read.

• W: a checkbox controlling whether the watchpoint should trigger when the memory location is
written.

• GC: a checkbox controlling whether the watchpoint should trigger at all during VM execution
periods when GC is operating.

148 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

• Thread: the thread, if any, that triggered the watchpoint.

• Address: the specific location, if any, that triggered the watchpoint.

• Code: an indication of what action in the VM caused the trigger.

Optional display columns

Additional columns may be displayed via a dialog produced by the View Options entry in the Inspector’s
View menu. They include:

• X: a checkbox controlling whether the watchpoint should trigger when the memory is read for
execution, false by default.

• the standard Memory Region Column.

Setting watchpoints

Watchpoints may be created and managed in several ways:

• using entries in the Edit menu on the Inspectors menu bar.

• by mouse left-double-click over the Tag column in any view for which rows correspond to memory
ranges.

• using a menu produced by mouse right-click over the Tag column in any view for which rows
correspond to memory regions.

Debugging

The Maxine Inspector supports a number of debugging features, most of which leverage the views that
have been described in other segments. This section describes how to use those features to handle some
specific situations. More features for debugging and more discussion of this topic are forthcoming.

Debugging Traps

To find out when a hardware trap happens, you can set a machine code breakpoint in the respon-
sible trap handler. For example, when you are interested in SEGV signals, set a Breakpoint in
com.sun.max.vm.runtime.Trap.handleSegmentationFault(), using the menu item
Debug → Break at Method Entry → Compiled Method... or its keyboard shortcut
CTRL-SHIFT-E. Once the VM is stopped at the breakpoint, remove it and place breakpoints at ev-
ery exit from the method (RET instruction on x64). Then resume the process.

Once one of the latter breakpoints hits, the VM now has left information about the trap in thread local
storage where the inspector can pick it up. Select View → Stack from the menu. This brings up a
Stack inspector that shows the stack how it was when the trap happened. You can even find out which
instruction was responsible by clicking on the top frame. The instruction will be highlighted by a blue
selection border.

Note that the Registers Inspector will not show register values from the trap site, but the current register
values in the trap handler.

7.27. The Maxine Inspector 149

Maxine-VM Documentation, Release 2.6.0

Since some exceptions (e.g. null pointer, divide by zero) are implemented as implicit exceptions that are
handled via traps, not every trap is necessarily a VM crash, but it may also be normal operation.

To observe divide-by-zero traps, use a different trap handler, then apply the same procedure as above.

Debugging through a Garbage Collection

If you set a breakpoint inside the GC implementation and suspend the VM there, you may find that
some object references are no longer functioning. The Inspector detects when a GC is underway and
then distinguishes references into the boot image from those into the runtime heap. Whereas the former
are immutable and always intact, the latter are considered broken during GC. Where ever they appear
in fields, array elements etc. they change in color from green to red and most interaction with them is
disabled.

Once the GC has finished, the Inspector refreshes all the red references and they become green and fully
functional again.

Native Code

The Inspector provides some limited support for debugging native code that is either included in the VM
image or loaded dynamically by user code, e.g., with System.loadLibrary.

The Code menu provides an entry View native function by name. This initially brings up a dialog with
a list of loaded libraries, for example, libjvm which contains the native code that supports the VM.
Selecting a library then brings up a list of functions defined in the library. Selecting a function then
brings up a code view for that function. These dialogs behave similarly to those for Java methods so
that name filtering, for example, works as expected. Note that if this menu entry is invoked before a
symbol lookup in the library has occurred, the addresses of the functions in a library will not be known.
In this case a dialog with the text “Functions are not available at this stage” is displayed. This window
is usually very short and is unlikely to be encountered in practice.

A breakpoint may be set at the entry to a native function by the Debug -> Break at machine
code -> Native function, which brings up similar dialogs.

There is currently no support for symbolic display of instructions within a native function, and stack
walking is not implemented within a chain of nested function calls.

Notepad

The Inspector provides a persistent notepad for the user’s convenience. The notepad contains an arbitrary
collection of text that the user can manage and which endures across restarts of the Inspector. A small
amount of specialized behavior driven by the contents of the notepad is supported, and this may be
extended in the future.

150 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Viewing and editing access to the Inspector’s notepad is provided by the Notepad Inspector, an example
of which appears to the right. This Inspector is a very simple text editor whose single buffer is implicitly
persistent; it need not be explicitly saved, and it will always endure across Inspector sessions.

Text in the Editing commands include the familiar Cut/Copy/Paste commands, which interoperate with
the same system clipboard used by the rest of the Inspector and which are available in three ways:

• from entries on the Inspector’s Edit menu;

• from entries on a menu that pops up in response to a mouse right-click over the editing area; and

• from conventional keystroke accelerators, which are noted in the menu entries.

Specialized behavior

Additional specialized behavior is available when a selected range of text can be interpreted as a memory
address expressed in hexadecimal, as is the selection in the example:

• the commands Inspect memory at selected address and Inspect memory region containing selected
address become enabled and can create Memory Inspectors as suggested by their names. These
commands appear on a menu that pops up in response to a mouse right-click over the editing
area and as context-specific additions to the standard Memory menu on the menu bar. When the
selection cannot be interpreted as a memory address, the commands are disabled and grayed out.

• when the selected range of text can be interpreted as a memory address that is the origin of a
VM Heap Object, the command Inspect object at selected origin becomes enabled and can create
an Object Inspector displaying the object’s representation. This command appears on a menu

7.27. The Maxine Inspector 151

Maxine-VM Documentation, Release 2.6.0

that pops up in response to a mouse right-click over the editing area and as a context-specific
addition to the standard Object menu on the menu bar (see example). When the selection cannot
be interpreted as a memory address that points at an object origin, the command is disabled and
grayed out.

User Focus

The views (known as individual “Inspectors”) available within the Maxine Inspector make visible many
different aspects of the VM state (see, for example, the Inspectors listed on the standard View menu),
and many of them support some kind of user-driven selection. Some selections have side effects that
cause other Inspector views make visible information related to the selection; in other words, some view
actions are coordinated by user selections. The mechanism for this coordination is the user focus. When
the description of an Inspector refers to the currently selected X, for some kind of VM entity X, it refers
to the specific instance of X that is set in the user focus.

Some user selections have the side effect of setting a user focus: a selection that is shared among all
Inspector views. At present, such shared selections include:

• Thread

• Stack Frame

• Code Location (Machine Code, Bytecode, or both)

• Breakpoint

• Watchpoint

• Memory address

• Heap Object

Strict View Coordination

In the case of threads, the coordination among views is strict, so that there is an invariant relationship
among certain thread-specific views:

• The Registers Inspector only displays the registers for the currently selected thread.

• The Stack Inspector only displays the stack and its stack frames for the currently selected thread.

• The Thread Locals Inspector only displays thread local storage for the currently selected thread.

• Machine Code Inspectors and Bytecode Inspectors display the instruction pointer and call return
sites on the stack only for the currently selected thread.

• Any Tag column in a memory-related view adds annotations only for registers in the currently
selected thread that point into the row’s memory region.

Another example of strict coordination occurs within the Stack Inspector. The lower part of the Inspector
only displays the stack frame slots for the currently selected stack frame.

Relaxed View Coordination

Some selections that set the user focus have side effects on other views, but there is no strong invariant
of the sort mentioned above for threads. The goal of these side effects is to bring into user view some

152 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

relevant information about the entity just selected. The specific nature of these rules is evolving, based
on user experience. Examples include:

• Selecting a frame in the Stack Inspector causes the instruction pointer in the frame (if the top
frame) or call return pointer (if other than the top frame) to become the currently selected code
location. This in turn causes the appropriate Method Inspector to display the method and select
the code location in that view.

• Selecting a breakpoint causes its location to become the currently selected code location, which in
turn causes the appropriate Method Inspector to display the method and select the code location
in that view.

Subsequent actions, for example selecting another code instruction, will break these relationships.

The User Focus Inspector

A specialized inspector displays the current members of the user focus at any time. In the example
below, every aspect of the user focus is non-null, but this is not always the case.

This Inspector is intended mainly for testing the Maxine Inspector itself (which is why it appears only
in the Test menu on the main menu bar), but it can be useful to help understand unexpected interactions.

Menus

The Maxine Inspector displays menus in three contexts:

• the main menu bar, which appears at the top of the entire application frame;

• an inspector menu bar on each of the specific Inspector views; and

• a popup menu that appears in response to a mouse right-click.

A distinguished set of standard menus can appear in many contexts and have behavior that is generally
independent of context. In other words these menus have the same names, entries, and behavior no
matter where they appear. The standard menus, described in more detail below, are named Memory,
Object, Code, Debug, and View.

Other menus have behavior that is generally dependent on context, for example the Default menu that is
accessible at the upper left of every Inspector view under a triangle icon, and the Edit menu that appears
on Inspectors where the displayed contents can be modified in some way.

Finally, some menus are a combination of a standard menu with additional context-dependent entries
added before the standard entries, separated by a horizontal separator.

7.27. The Maxine Inspector 153

Maxine-VM Documentation, Release 2.6.0

The Main Menu Bar

The standard menus Memory, Object, Code, Debug, and View appear, among others, in the main menu
bar of the Inspector, as shown below:

Other menus, unique to the main menu bar include:

• Inspector: general functionality, including Refresh all Views, Close all views, Preferences, and
Quit Inspector.

• Java: very specialized commands concerning the VM, for example setting tracing level in the
VM.

• Test: some commands specialized for debugging the Inspector. Most list some summary of inter-
nal state to the console. The exception, View User Focus, creates the User Focus Inspector, which
summarizes all the aspects of current user focus, for example selected selected thread, stack frame,
selected memory address, etc. See User Focus.

• Helep: access to the Inspector’s Help System would be here, if it had one. Sorry.

Inspector Menu Bars

Standard menus sometimes appear (when relevant) in the menu bar of individual Inspector windows. In
such cases, the menus sometimes contains additional menu entries that are dependent on the context of
the particular view. These context-dependent menu entries usually appear first on the menu, followed by
a line that acts as a separator, followed the the standard context-independent entries. For example, in the
example display of the Notepad Inspector, the standard Object menu contains an additional entry that is
sensitive to the current text selection in the notepad.

The Standard Memory Menu

The standard Memory menu contains entries designed to create and manage Inspectors related to low-
level memory properties of the VM. They include:

• Inspect memory region: produces a dynamically generated submenu listing all known Memory
Regions. Selecting an entry produces a Memory Inspector whose display spans the region.

• Inspect memory at address. . . : produces a dialog in which a memory address can be entered,
which in turn produces a Memory Inspector whose display begins at the specified address.

• Inspect memory bytes at address. . . : produces a dialog in which a memory address can be entered,
which in turn produces a Memory Bytes Inspector whose display begins at the specified address.

• Memory inspectors: produces a dynamically generated submenu listing all existing Memory In-
spectors. Selecting an entry brings the Inspector window to the foreground.

154 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

• View Memory Regions: produces the Memory Regions Inspector. This entry also appears on the
standard View menu.

As with all standard menus, the standard Memory menu also appears on some individual Inspector
windows. When it does appear, it often contains some additional entries that are context-dependent,
which is to say their behavior depends on the particular Inspector in which it appears. For example,
each Object Inspector adds the entry Inspect this object’s memory, which produces a Memory Inspector
whose display spans the representation of the object being inspected.

The Standard Object Menu

The standard Object menu contains entries designed to create and manage Object Inspectors. They
include:

• Inspect method actor: produces a dialog that permits identification (by name) of a Java method
presumed to be loaded into the VM. If so, this produces an Object Inspector on the special VM
object (of type MethodActor) that the VM uses to represent information about the method.

• e: produces a dialog that permits identification (by name or ID) of a Java class presumed to be

7.27. The Maxine Inspector 155

Maxine-VM Documentation, Release 2.6.0

loaded into the VM. If so, this produces an Object Inspector on the special VM object (of type
ClassActor) that the VM uses to represent information about the class.

• Inspect object: produces a dialog that permits identification of a Java object (by address or In-
spector session ID) presumed to exist into the VM. If so, this produces an Object Inspector on the
object.

• Object Inspectors: produces a dynamically generated submenu listing all existing Object Inspec-
tors. Selecting an entry brings the Inspector window to the foreground.

As with all standard menus, the standard Object menu also appears on some individual Inspector win-
dows. When it does appear, it often contains some additional entries that are context-dependent, which is
to say their behavior depends on the particular Inspector in which it appears. For example, each Method
Inspector adds entries that create Object Inspectors for VM objects that represent important information
about the method being viewed: class, method, compilation, etc.

The Standard Code Menu

The standard Code menu offers a number of ways to locate and view code in the VM:

• at current selection: the currently selected code location (see User Focus), if set.

• at current IP: at the code location of the instruction pointer in the currently selected thread.

• target code. . . : a method selected interactively from all known compiled methods, first by class
and then by method. Typing into a filter field in these dialogs makes them a very fast way to find
an existing compilation.

• method code by name: a method described interactively by specifying a name.

• boot image method codew:

• target code address: compiled code located at a memory address entered interactively into a
dialog.

156 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

The Standard Debug Menu

The standard Debug menu is unusual in that contains two categories of entries (both related to debug-
ging), separated by a horizontal line.

The first category of menu entries provide debugging control of the VM process: Resume, Step (some-
times known as “step in”), Step over, Return (sometimes known as “step out”), Run to selected. . . , Run
to next call. . . , Pause, and variations.

7.27. The Maxine Inspector 157

Maxine-VM Documentation, Release 2.6.0

The second category offers management of breakpoints and watchpoints in the VM’s process.

• Break at builtin: produces a submenu containing predefined locations in the VM at which break-
points can be set; this is a convenience for setting breakpoints at significant VM events, without
requiring that the user know in advance exactly what method represents the action.

• Break at method entry: produces one of a variety of dialogs for specifying methods at which an
entry breakpoint should be set.

• Break at target code: produces one of a variety of dialogs for specifying locations in memory at
which a machine code breakpoint should be set.

• Toggle breakpoint: turns on or off the breakpoint at the currently selected code location (see User
Focus).

• Remove all breakpoints: (enabled only when there are breakpoints set) clears all breakpoints from
the VM process.

• View Breakpoints: creates the Breakpoints Inspector.

• Watch memory word at address: produces a dialog in which the use can enter a specific memory
address in hexadecimal, which will be used as the origin of a newly created Object Inspector.

• Remove all watchpoints: (enabled only when there are watchpoints set) clears all watchpoints
from the VM process.

• View Watchpoints: creates the Watchpoints Inspector.

The Standard View Menu

The standard View menu provides access to all the different kinds of Inspectors that are available during
a Maxine inspection session. Most are singletons, in which case the specified Inspector is either created
or simply brought to the front if it already exists. In the two cases where there can be any number of
inspectors (Memory and Objects), submenus are dynamically generated that allow a specific inspector
to be brought to the front.

• Boot image info: produces the Boot Image Inspector

• Breakpoints: produces the Breakpoints Inspector

• Memory inspectors: produces a dynamically generated submenu listing all existing Memory In-
spectors. Selecting an entry brings the Inspector window to the foreground.

• Memory regions: produces the Memory Regions Inspector

• Method code: produces the Method Inspector.

• Notepad: produces the Notepad Inspector

• Object Inspectors: produces a dynamically generated submenu listing all existing Object Inspec-
tors. Selecting an entry brings the Inspector window to the foreground.

• Registers: produces the Registers Inspector

• Stack: produces the Stacks Inspector

• Threads: produces the Threads Inspector

• VM thread locals: produces the VM Thread Locals Inspector

• Watchpoints: produces the Watchpoints Inspector

158 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

As with all standard menus, the standard View menu also appears on individual Inspector windows.
When it does appear, it contains some additional entries that are context-dependent, which is to say their
behavior depends on the particular Inspector in which it appears. The two that are present in most cases
are:

• View options: produces a dialog that permits setting persistent User Preferences related to the
views. In cases where multiple Inspectors of a given kind can exist, the dialog permits setting
each preference either temporarily (just for the instance being viewed) or persistently for all sub-
sequently created Inspectors. These include inspectors for Memory, Methods, and Objects.

• Refresh: causes data being displayed in this specific view to be reread from the VM and re-
displayed.

The Default (“Triangle”) Inspector Menu

Every Inspector Window contains a “Default” menu with generic command that relate mostly to win-
dows, for example Close, Close Other Inspectors, Refresh, and sometimes Print.

Some default menus contain additional entries with more specific, context-dependent behavior. For
example, the default menu in the Object Inspector example to the right contains the two commands

7.27. The Maxine Inspector 159

Maxine-VM Documentation, Release 2.6.0

Close other object inspectors and Close all object inspectors, and the default menu in every Memory
Inspector contains analogous entries.

The Edit Menu

Every Inspector views in which the contents can be changed will display an appropriate Edit menu in
the menu bar. For example the Edit menu in a Memory Inspector contains a command to change the
origin, and the Edit menu in both the Breakpoints Inspector and Watchpoints Inspector have commands
to delete breakpoints and watchpoints respectively.

User Preferences

Most of the Inspector’s views provide user selectable view options that configure the information ap-
pearing in the displays. In some cases these preferences can be set for either a specific instance (for
example a particular Object Inspector, or as a general preference for all subsequently created views of
that kind.

The view options relevant to each Inspector are by convention available via a menu item named View
Options on the window frame of the particular Inspector. A summary of all view options, as well as
other user preferences, can be managed invoking the Preferences action on the Inspector’s main menu
bar. The image below displays the current appearances of the dialog for managing user preferences.

The settings of these preferences are made persistent by default, stored in a file typically named
maxine.ins.

7.28 How the Inspector interacts with the Maxine VM

This page describes how the Maxine Inspector’s interaction with a running VM is implemented.

General goals for the Inspector all deal with making development and experimentation in the Maxine
VM as productive and widely accessible as possible:

160 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

• Support basic debugging of the Maxine VM, something not possible with standard tools.

• Make visible as much internal VM state as possible, both in terms of design abstractions and in
terms of low-level representations, even when the VM is broken.

• Provide new developers with a fast path to understanding VM internals.

A few general strategies guide the Inspector’s implementation:

• Run in a separate process (usually local, but see Guest VM), so that inspection depends neither on
a correctly running VM process nor there being any process that all.

• Require as little active support from the VM as possible, in particular require no active agent.

• Reuse as much VM code as possible, especially reading/writing/understanding the low-level rep-
resentations of data on the target platform (possibly different than the platform on which the
Inspector runs).

• Load VM classes into the Inspector for reflective use in understanding VM data.

• Rely on platform-specific implementations for low-level interaction with a running VM: process
control, threads, breakpoints, access to memory and registers.

7.28.1 Low-level VM Interaction

This section describes the Inspector’s access to the lowest level abstractions in the VM process, namely
the resources provided by the underlying platform: memory, threads, and execution state.

Process control

One of the most difficult and frustrating parts of the Inspector’s implementation is the need to imple-
ment low-level process controls on the several supported platforms. These controls include reading and
writing from the VM’s memory, finding and inspecting threads, setting breakpoints, setting watchpoints,
and deciphering process state.

Generic controls are implemented in class com.sun.max.tele.debug.TeleProcess. Concrete
subclasses using native methods implement the controls for specific platforms:

• Solaris: platform support is best on Solaris, where libproc provides a programmatic interface to
the Solaris /proc pseudo-filesystem. Watchpoints are supported with no limit on their number
(see Native/tele/darwin/*.[ch]).

• Linux: the Inspector uses a mixture of ptrace(2) and /proc (see Native/tele/linux/
*.[ch]).

• Mac OS X: on the Mac the Inspector uses a mixture of ptrace(2) and the Mach API (see
Native/tele/darwin/*.[ch]).

• Guest VM: the Guest VM variant of the VM runs in a Xen domain where such OS services are
unavailable, so controls must be implemented using Xen inter-domain communication.

This code can be very subtle. It now seems to work fairly reliably, but at the cost of many hours
deciphering non-documentation and gdb source code. In our experience, programming a debugger is a
very niche activity.

7.28. How the Inspector interacts with the Maxine VM 161

Maxine-VM Documentation, Release 2.6.0

Reading and writing VM memory

Low-level memory access is implemented using basic process control methods in class TeleProcess:

read(Address address, BtyeBuffer buffer, int offset, int length)
write(Address address, ByteBuffer buffer, int offset, int length)

However, interpreting the bits presents more of a challenge, since this must be done for a VM running on
a potentially different platform. Fortunately, the Inspector is able to load the Java classes that describe
the target platform and then reuse the VM’s own code for reading and writing bits representing the VM’s
internal primitive data types. Methods for reading and writing those types appears in interface com.
sun.max.tele.data.DataAccess, and all but the lowest-level read methods are implemented
by class com.sun.max.tele.data.DataAccessAdapter.

For performance reasons, especially for non-local debugging such as with the Guest VM, the Inspec-
tor caches pages of memory read since the most recent process execution (see class com.sun.max.
tele.page.PageDataAccess).

Logging

The Inspector’s low-level interaction with the VM process can be observed. See Low-level logging for
instructions on enabling all low-level VM logging. In order to observe only Inspector-related events,
change log_TELE to 1 in Native/share/log.h, rather than log-ALL.

7.28.2 Passive VM support

Although the Inspector is designed to rely as little as possible on the internals of the VM, there are a
number of ways in which the VM is constructed to make inspection as easy as possible. The mecha-
nisms described in this section incur zero runtime overhead in the VM, and involve no writing into VM
memory.

Locating critical VM resources

The Inspector leverages considerable knowledge of the VM’s internal data representations to build its
model of VM state, but it must have somewhere to start when beginning to read from a memory image.
The boot image generator stores in the boot image header a number of addresses and other data that
help the Inspector (and VM) find things. These addresses get relocated, along with the contents of the
heap, during Bootstrap. The Inspector leverages detailed knowledge of the header’s contents in order to
locate, among others:

• the VM’s schemes bindings, which are loaded into the Inspector

• the boot heap

• the boot code region

• the class registry

• the list of dynamically allocated heap segments

• the list of thread local areas

• the entry location of key methods

162 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

Field access

The Inspector uses a variety of mechanisms to locate instance or class fields in the heap. During the
Inspector’s starting sequence (when little is yet known about VM state), fields are typically located by
relying on specific knowledge of a few key object types, possibly using Java reflection on the VM classes
(which are all loaded into the Inspector). This kind of access is relatively unsafe, since it bypasses the
type system in the running VM. There are more abstract ways to access fields, but they rely on the
Inspector’s model of VM’s class registry, which must first be created using the low-level mechanisms.

The simplest way to exploit higher-level field access mechanisms is to annotate (in VM code) fields
of interest using @INSPECTED. The main method in com.sun.max.tele.field.TeleFields
reads VM sources, generates field access methods, and writes them back into itself for use by the In-
spector. These access method implementations hide all the indirections necessary to read or write field
data (taking into account the hardware platform, the layout being used, the particular representation for
the object, and the class layout) and return values of the desired types.

Method access

The Inspector uses a variety of mechanisms to locate methods and their compilations (either in-
stance or class). Specific methods can be called out for enhanced access by the Inspector by an-
notating (in VM code) those methods using @INSPECTED. The offline program TeleMethods reads
VM sources, generates method access methods, and writes them into class com.sun.max.tele.
method.TeleMethods. These access method implementations hide all the indirection necessary to
locate the annotated methods and their meta-information.

Method interpretation

VM methods annotated with @INSPECTED can be interpreted by the Inspector (for example, see
TeleMethodAccess.interpret()). Interpretation takes place in the Inspector’s process, but in
the execution context of the VM: object references are boxed locations in VM memory, reading/writing
is redirected through VM data access, class ID lookup is redirected to the Inspector’s model of the VM’s
class registry, and bytecodes are located using reflection on the VM’s code loaded in the Inspector.

The Inspector’s interpreter runs very slowly. It is used routinely by the Inspector in only a
few situations, where VM data structures to be navigated are too complex (e.g. a hash ta-
ble) to be navigated robustly using low-level techniques. For example, see the Inspector method
TeleCodeCache.findCompiledCode(Address), which interprets remotely the VM method
Code.codePointerToTargetMethod(Address).

Although the interpreter is in principle capable of writing into VM memory, it is not used in any situa-
tions where this happens.

7.28.3 Active VM support

Active VM support for inspection is kept to an absolute minimum, but in most cases either incur very
little VM overhead or are enabled only when the VM is being inspected. There are several flavors of
support mechanisms:

• Distinguished fields, usually static, where the VM records information exclusively for the con-
sumption by the inspector.

7.28. How the Inspector interacts with the Maxine VM 163

Maxine-VM Documentation, Release 2.6.0

• Distinguished methods, usually static and usually empty, called by VM code exclusively as po-
tential breakpoint locations for the inspector; this is a weak kind of event mechanism.

• Special VM memory locations into which the Inspector writes for consumption by specific VM
mechanisms.

As a matter of organization, this kind of support is implemented mainly by VM classes in the package
com.sun.max.vm.tele, but it often imposes some obligations on specific scheme implementations,
for example to store a value or call a method. These obligations are increasingly specified and docu-
mented in scheme definitions.

The remainder of this section describes a few areas of active VM support for inspection.

Enabling inspection support

Many support mechanisms in the VM operate conditionally, depending on the value of static method
com.sun.max.vm.tele.Inspectable.isVmInspected(). This predicate checks one of the
bits in the static field Inspectable.flags in VM memory, which can be set in one of two ways:

• When the VM is started by the Inspector, the Inspector sets that bit in VM memory early in its
startup sequence (see Inspector method TeleVM.modifyInspectableFlags()).

• When the VM is not started by the Inspector, but when it is anticipated that the Inspector might
subsequently attach the VM process, a command line option to the VM makes it inspectable.

At present, the VM cannot be made inspectable unless this bit is set early during the VM startup se-
quence.

Class-related support

The Inspector tracks every class loaded in the VM, as represented by the current contents of
the VM’s ClassRegistry; the Inspector maintains that information using the Inspector class
TeleClassRegistry.

The Inspector initializes its TeleClassRegistry at VM startup, effectively identifying the classes
already loaded in the boot heap; it does this by directly reading (using low-level operations that rely on
significant knowledge of the data structures involved) the contents of the VM’s ClassRegistry in the
boot heap. As noted earlier, this data structure cannot be read using the more abstract, relatively more
type-safe techniques in the inspector because those techniques rely on type information stored in the
TeleClassRegistry. This is one of many circularities in the Inspector that reflect the underlying
meta-circularity of the Maxine VM.

As the VM loads additional classes dynamically, and when inspection is enabled, the VM records them
using the following static fields in VM memory:

package com.sun.max.vm.tele;

public final class InspectableClassInfo {
...
@INSPECTED
private static ClassActor[] classActors;

@INSPECTED
private static int classActorCount = 0;

(continues on next page)

164 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

(continued from previous page)

...
}

The Inspector refreshes the TeleClassRegistry each time the VM process halts: it checks the
VM’s count against its cache and reads information from VM memory about any newly loaded classes.

No provision is made for tracking classes that the VM unloads. In fact, the VM implements class
unloading by garbage collection, and a regrettable consequence of this inspection mechanism is that it
prevents class unloading. This is by far the most egregious interference visited upon the VM by the
Inspector, and it might be corrected in the future.

Heap-related support

Implementations of the Maxine VM’s heap scheme are obliged to make certain calls, as documented and
supported by the scheme’s static inner class com.sun.max.vm.heap.HeapScheme.Inspect.
All of these calls delegate to the VM class com.sun.max.vm.tele.InspectableHeapInfo,
which provides several kinds of services when the VM is being inspected (described below): heap
allocations, object relocations, and events.

Allocated heap segments

An inspectable, static field in the VM class com.sun.max.vm.tele.InspectableHeapInfo
holds the list of memory regions currently allocated as heap segments. This list is read from VM memory
by the Inspector each time the VM process halts; any additional heap segment allocations to the infor-
mation are tracked in the inspector class TeleHeap. This enables the inspector to make a quick first
check about whether a VM memory location could hold a valid heap object, and permits a visualization
of all memory allocations made by the VM.

Object locations

The Inspector tracks heap objects of interest: sometimes because the user is viewing them, but much
more frequently because they represent vital information about the execution state of the VM. In the
presence of relocating garbage collection that can take place at any time (with respect to the Inspector),
there is no practical way for the Inspector to track object locations without some support from the VM.

When the VM is being inspected, it actively supports object tracking by allocating in VM memory an
additional root table: an array of addresses that are treated by garbage collection implementations as
roots to be updated as needed when objects move. Entries in this table are treated by the VM as weak
references: both to minimize disruption of VM operation and for the Inspector to discover when objects
have become garbage. Access to the root table is provided via inspectable static fields in the VM class
com.sun.max.vm.tele.InspectableHeapInfo.

The Inspector checks the root table each time the VM halts. It does so by reading two static fields in
com.sun.max.vm.tele.InspectableHeapInfo that are incremented by the garbage collec-
tors: one counts the number of collections initiated so far and one counts the number of collections
completed. The Inspector compares those two counters with their previous values. If a new collection
has concluded since the last refresh, then the entire contents of the VM’s root table are copied into the
Inspector’s cache, where they are available for the Inspector’s implementation of remote object refer-
ences. When the Inspector creates a new object Reference, based on a specific address in the VM’s

7.28. How the Inspector interacts with the Maxine VM 165

Maxine-VM Documentation, Release 2.6.0

heap, that value is added to an empty slot in the Inspector’s root table cache and is written through to the
corresponding location in the VM’s root table.

The Inspector can also observe object relocation directly, if needed, by setting a breakpoint on the
following method:

InspectableHeapInfo.inspectableObjectRelocated(Address oldCellLocation,
→˓Address newCellLocation){}

This empty method is called each time an object is relocated and it exists for just this purpose.

Heap events

The VM makes it convenient for the Inspector to halt the VM process at certain interesting events. It
does so by creating special methods that are called at those times, methods that do nothing in the VM,
but which are convenient for the Inspector to set breakpoints. The VM class com.sun.max.vm.
tele.InspectableHeapInfo contains the following methods of this sort:

• inspectableGCStarted()

• inspectableGCCompleted()

• inspectableObjectRelocated()

• inspectableIncreaseMemoryRequested()

• inspectableDecreaseMemoryRequested()

Code-related support

The Inspector’s breakpoint mechanism requires active support from the Maxine VM’s compilation
scheme. As a machine-level debugger, the natural kind of breakpoint supported by the Inspector (and by
the underlying platform) is specified in terms of a memory location in compiled machine code. However,
the Inspector also supports breakpoints specified in terms of a method’s signature, so-called bytecode
breakpoints. The Maxine VM runs only compiled code, so a bytecode breakpoint is understood to mean
that there should be a corresponding machine code breakpoint set in every compilation of the method,
present or future. A bytecode breakpoint can even be set (at location 0) for methods not yet loaded into
the VM.

An early implementation of bytecode breakpoints divided responsibility for setting these breakpoints:
the Inspector set them for existing compilations and a request was written into a queue in the VM for
the runtime compiler, which would create the machine code breakpoints in any subsequent compila-
tion. This approach had an irreconcilable race and was replaced by the simpler approach of halting the
VM immediately after every method compilation. The Inspector would compare the compiled method
against its current list and set a machine code breakpoint if needed. This implementation proved to incur
too much overhead for non-local debugging, notably for Guest VM.

The current implementation (see Inspector class TeleBytecodeBreakpoint) halts the VM after
method compilations, but filters those events. Each time the Inspector’s list of bytecode breakpoints
changes, the Inspector writes into VM memory an easily parsed list of textual type descriptors for those
classes for which one or more bytecode breakpoints are currently set. Implementations of the VM’s
compilation scheme are required to call a static notification method in the scheme’s static inner class
com.sun.max.vm.heap.HeapScheme.Inspect at the beginning and end of each method com-
pilation. This delegates to VM class com.sun.max.vm.tele.InspectableCodeInfo, where

166 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

the current list of classes is consulted. If the class of the method just compiled is in the list, it results
in a call to the empty method inspectableCompilationEvent() where the Inspector can set a
breakpoint. Filtering only by class, not by method, results in some false positives, but the mechanism is
simple, fully synchronous, and reduces the interruptions more than enough.

7.28.4 Inspector evolution

The Inspector’s life began long before the Maxine VM could run usefully, a period during which the
novel meta-circular, highly modular architecture was refined and techniques for generating the Maxine
boot image developed. The Inspector’s original role was static visualization and exploration of the binary
boot image in terms of the higher level abstractions of the VM, something that could not be done by any
existing tool.

As the VM became increasingly able to run through its startup (bootstrap sequence), basic debugging
features were added: process controls and breakpoints, along with register and stack visualization. The
Inspector remained monolithic (with no model/view separation) and single-threaded (the GUI froze
during VM process execution).

As the VM began to execute application code, work on the Inspector proceeded incrementally along
several fronts simultaneously:

• features on demand: as the VM became more functional and the concerns of the development
team evolved, many more features were added: additional views of internal state, more debugging
controls, more user options, etc. These were, and continue to be, demand-driven according to the
needs of the project.

• UI functionality and consistency: the early window implementations were rewritten for code reuse
and standardized around new conventions, the menu system was standardized and extended, Java
Look & Feel compliance was added, and more.

• re-architecting internals: model/view separation was added, direct interaction among views was
replaced by a user event model, change propagation was refined, generalized notion of user selec-
tion defined, etc.

Once model/view separation became explicit in the previously monolithic code base, the Inspector
sources were incrementally split into two “projects” with distinct concerns:

• Tele: responsible for communicating with and managing the VM process, essentially being the
keeper of the model of the VM’s state at any point during the session.

• Inspector: responsible for user interaction, state visualization, and command handling.

Dependence between the two projects eventually became one-way, but remained complex: the
Inspector project depends directly on many implementation classes from both the Tele and VM
projects. A subsequent effort to further separate the two by re-engineering around new, well-documented
interfaces is only partially complete.

As the Inspector evolved into a heavily used debugger, demand grew for multi-threaded management
of the VM process so that the GUI would remain live and in particular so that a user could interrupt
(“Pause”) a running VM. Concurrent operation is now supported, but the retrofit (over complex, dis-
tributed interactions in the reading and modeling of VM state) is incomplete Occasional concurrency
problems appear as the VM and Inspector evolve.

7.28. How the Inspector interacts with the Maxine VM 167

Maxine-VM Documentation, Release 2.6.0

7.29 Papers and Presentations

This page lists some of the papers, presentations, articles and demos that have resulted from the Maxine
project and its predecessors.

• Christos Kotselidis, Andy Nisbet, Foivos S. Zakkak, Nikos Foutris. Cross-ISA debugging in
meta-circular VMs. In 9th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages (VMIL), 2017.

• Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet, John Mawer, and Mikel
Luján. Heterogeneous Managed Runtime Systems: A Computer Vision Case Study. In 13th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE), 2017.

• Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan, Laurent Daynès,
Douglas Simon: Maxine: An Approachable Virtual Machine For, and In, Java. In ACM Trans-
actions on Architecture and Code Optimization, volume 9, issue 4, article 30. ACM Press,
2013.doi:10.1145/2400682.2400689.

• Sameer Kulkarni, John Cavazos, Christian Wimmer, Douglas Simon: Construction of Inlining
Heuristics using Machine Learning. In Proceedings of the International Symposium on Code
Generation and Optimization. IEEE, 2013.

• Mohammad Mahdi Shahabi, Dynamic Location-Based Analysis of Access Contracts, Masters
Thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, August 9, 2012.

• Vinicius H. S. Durelli, Jeff Offutt, and Marcio E. Delamaro. 2012. Toward Harnessing High-Level
Language Virtual Machines for Further Speeding Up Weak Mutation Testing. In Proceedings of
the 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation
(ICST ‘12). IEEE Computer Society, Washington, DC, USA, 681-690.

• Christian Wimmer, Laurent Daynes: Maxine: A Virtual Machine For, and In, Java, ECOOP Sum-
mer School, Jun 15, 2012.

• Christian Wimmer, Stefan Brunthaler, Per Larsen, and Michael Franz. 2012. Fine-grained mod-
ularity and reuse of virtual machine components. In Proceedings of the 11th annual international
conference on Aspect-oriented Software Development (AOSD ‘12). ACM, New York, NY, USA,
203-214.

• Michael Haupt, “Machine Code Management in the Maxine Research Virtual Machine” (Presen-
tation), Hasso-Plattner-Institut Potsdam, Jan 27, 2012

• Michael Haupt, Stefan Marr, Robert Hirschfeld, “CSOM/PL: A Virtual Machine Product Line”,
Journal of Object Technology, Vol. 10, 2011

• Michael Haupt, “The Maxine Virtual Machine” (Presentation), Universität Leipzig, Nov 10, 2011;
Technische Universität Dortmund, Nov 24, 2011

• Thomas Würthinger, Extending the Graal Compiler to Optimize Libraries (Demonstration),
SPLASH‘11, Portland, OR, October 22-27, 2011

• Michael Bebenita, Trace-Based Compilation and Optimization in Meta-Circular Virtual Execution
Environments, Ph.D. Dissertation, UC Irvine, 2011

• Victor Luchangco and Virendra J. Marathe, “Revisiting Condition Variables and Transactions”,
TRANSACT‘11, San Jose, California, June.

• Johannes Eickhold, Markus Knauer, “Sovereign: Migrating Java Threads to Improve Availability
of Web Applications”, EclipseCon 2011 (Presentation and Demo), Santa Clara, California, March

168 Chapter 7. Table of Contents

Maxine-VM Documentation, Release 2.6.0

21-24, 2011.

• Michael Van De Vanter, “The Maxine Virtual Machine and Inspector: a highly approachable
environment for VM Research” (Presentation) San Francisco State University, March 16, 2011,
California Polytechnic State University, April 7, 2011

• Victor Luchangco, Virendra J. Marathe, “Transaction Communicators: Enabling Cooperation
Among Concurrent Transactions”, PPoPP 2011, 16th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming, San Antonio, Texas, February 12-16, 2011

• Doug Simon, “What a meta-circular JVM buys you - and what not” (Keynote Talk), PPPJ ‘10, 8th
international Conference on the Principles and Practice of Programming in Java, Vienna, Austria,
September 15 - 17, 2010.

• Li, Jianyuan, Jan Simon Rellermeyer, Adrian Schüpbach, and Gustavo Alonso. Performance anal-
ysis and improvement of guestVM for running OSGi-based MacroComponents. PhD dissertation,
ETH Zurich, Department of Computer Science, Systems Group, August 22, 2010

• Johannes Eickhold, “Some introductory short articles about Maxine”

• Doug Simon, “Maxine Adapters” (Sample execution of a Maxine adapter), 2010

• M. Bebenita, M. Chang, G. Wagner, A. Gal, C. Wimmer, M. Franz, “Trace-based compilation in
execution environments without interpreters”, In Proceedings of the 8th international Conference
on the Principles and Practice of Programming in Java (Vienna, Austria, September 15 - 17, 2010).
PPPJ ‘10. ACM, New York, NY, 59-68.

• Michael Van De Vanter, “The Maxine Inspector: A Specialized Tool for VM Development” (Pre-
sentation and Demo), 2010 JVM Language Summit, July 28, 2010, Santa Clara, California.,
(video recording)

• Ben Titzer, Thomas Würthinger, Doug Simon, and Marcelo Cintra, “Improving compiler-runtime
separation with XIR”, VEE 2010, Proceedings of the International Conference on Virtual Execu-
tion Environments, pages 39–50. ACM Press„ SIGPLAN Notices 45, 7 (Jul. 2010), 39-50 (paper)
Discusses C1X and XIR. The results in this paper are based on revision 3254 of the Maxine
sources.

• Doug Simon, Ben Titzer, “Splicing Modules with a Metacircular Saw: “Snippets” in the Max-
ine VM” (Invited Talk), VMIL 2009, The 3rd workshop on Virtual Machines and Intermediate
Languages, Orlando, Florida October 25, 2009.

• Doug Simon, “the Maxine Research Virtual Machine” (Internet radio interview), Software Engi-
neering Radio, Episode 144 , September 7, 2009.

• Allan Raundahl Gregersen, Douglas Simon and Bo Norregaard Jorgensen, “Towards a Dynamic-
Update-Enabled JVM”, 6th ECOOP‘2009 Workshop on Reflection, AOP and Meta-Data for Soft-
ware Evolution, Genova, Italy, July 7, 2009.

• Thomas Wuerthinger, Michael Van De Vanter, Doug Simon, “Multi-Level Virtual Machine De-
bugging using the Java Platform Debugger Architecture”, Seventh International Andrei Ershov
Memory Conference “Perspectives of System Informatics”, Novosibirsk, Russia, 15-19 June,
2009.

• Ben Titzer, “The Maxine Virtual Machine” (Presentation), Brown IPP Symposium on Standard-
izing Transactional Memory, Brown University, April 20, 2009.

• Bernd Mathiske, “Leveraging Meta-Circularity in the Maxine VM”, (Presentation) 2008 JVM
Language Summit, September 24, 2008, Santa Clara, California.,

7.29. Papers and Presentations 169

Maxine-VM Documentation, Release 2.6.0

• Bernd Mathiske, “Systems programming in the Maxine VM: how to enable it and how to get
around it”, (Invited Talk), PPPJ08 Principles and Practice of Programming in Java, Modena, Italy,
September 9-11, 2008 (video recording)

• Bernd Mathiske, “Systems Programming in the Maxine VM: how to enable it and how to get
around it”, 2008 JavaOne conference, San Francisco, California, June 2008

• Bernd Mathiske, Doug Simon, David Ungar, “An assembler and disassembler framework for
Java™ programmers”, Science of Computer Programming, Vol. 70, Issues 2-3, February 2008,
pp 127-148.

• Bernd Mathiske. 2008. The maxine virtual machine and inspector. In Companion to the 23rd
ACM SIGPLAN conference on Object-oriented programming systems languages and applications
(OOPSLA Companion ‘08). ACM, New York, NY, USA, 739-740.

• Bernd Mathiske, Doug Simon, David Ungar, “The Project Maxwell assembler system, In Pro-
ceedings of the 4th international Symposium on Principles and Practice of Programming in Java
(Mannheim, Germany, August 30 - September 01, 2006). PPPJ ‘06, vol. 178. ACM, New York,
NY, 3-12.

• David Ungar, Adam Spitz, Alex Ausch, “Constructing a metacircular Virtual machine in an ex-
ploratory programming environment”, In Companion To the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications (San Diego,
California, USA, October 16 - 20, 2005). OOPSLA ‘05. ACM, New York, NY, 11-20.

7.30 The Maxine Project: Contributors

This page lists the people who have been associated with the Maxine project. For code contribution
statistics see github contributions.

7.30.1 The University of Manchester

• Andrey Rodchenko

• Andy Nisbet

• Mikel Lujan

• Christos Kotselidis

• Foivos Zakkak

• Tim Hartley

• Iain Apreotesei

• Andreas Andronikakis

• Costas Lebesis

7.30.2 Oracle Labs

Oracle Labs members who contributed to Maxine:

• Laurent Daynes

170 Chapter 7. Table of Contents

https://github.com/beehive-lab/Maxine-VM/graphs/contributors
https://github.com/arodchen
https://github.com/drandynisbet
https://github.com/kotselidis
https://github.com/zakkak
https://github.com/timhartley
https://github.com/ibriq
https://github.com/aandronikakis
https://github.com/lebco
https://github.com/ldaynes

Maxine-VM Documentation, Release 2.6.0

• Michael Haupt

• Michael Van De Vanter

• Mick Jordan

• Doug Simon

• Michael Van De Vanter

• Christian Wimmer

• Thomas Würthinger

• Ben Titzer

• Paul Caprioli

• Bernd Mathiske (Principal Investigator, 2005 - 2008)

• Greg Wright (2003 - 2004)

Interns

Maxine would not be where it is today without the valuable input of these interns:

7.30. The Maxine Project: Contributors 171

https://github.com/mlvdv
https://github.com/mickjordan
https://github.com/dougxc
https://github.com/christianwimmer
https://github.com/thomaswue

Maxine-VM Documentation, Release 2.6.0

Name Affiliation When Topic
Christian Häubl Johannes Kepler U.

Linz
winter 2012 Profile feedback for

Graal
Arian Treffer HPI Potsdam summer 2011 object models for dy-

namic languages
Tobias Pape HPI Potsdam summer 2011 execution models for

dynamic languages
Gilles Duboscq Johannes Kepler U.

Linz
summer 2011 Graal

Sameer Kulkarni
21. Delaware

summer 2011 machine learning for
code optimization

Du Li
21. Nebraska Lin-

coln

fall 2010 VM support for analy-
sis

Lukas Stadler Johannes Kepler U.
Linz

summer 2010 C1X Hotspot integra-
tion

Michael Duller ETH Zürich summer 2010 De-opt
Puneet Lakhina UC Santa Barbara summer 2010 Maxine Virtual Edition
Thomas Würthinger Johannes Kepler U.

Linz
summer 2009 C1X and XIR

Marcelo Cintra UC Irvine summer 2009 interpreter and verifier
for IR of C1X

Hannes Payer
21. Salzburg

summer 2009 safepoint synchro-
nization, relocatable
watchpoints and GC
support in the The
Maxine Inspector,
immortal memory,
TLABs

Michael Bebenita UC Irvine summer 2008 trace compilation
Abdulaziz Ghuloum Indiana U. Blooming-

ton
summer 2008 performance analysis,

compiler optimizations
Yi Guo Rice summer 2008 performance analysis,

compiler optimizations
Christos Kotselidis

21. Manchester
summer 2008 generational garbage

collection (Beltway)

Karthik Manivannan UC Irvine summer 2008 generational garbage
collection (Beltway)

Thomas Würthinger Johannes Kepler U.
Linz

summer 2008 IR visualization, In-
spector GUI

Aritra Bandyopadhyay Colorado State U. summer 2008 IR visualization, In-
spector GUI, array
bounds checking

Simon Wilkinson
21. Manchester

spring 2008 multiple modal object
monitor implemen-
tations for thread
synchronization, in-
cluding biased-locking

Sunil Soman UC Santa Barbara winter 2007/2008 safepoint mechanism
debugging, semispace
GC

Athul Acharya Purdue summer 2007 remote interpretor for
the The Maxine In-
spector

Sumeet Panchal
21. Florida

summer 2007 CIR visualization,
ARM assembler

David Liu
21. Queensland

spring 2007 code generation for
switch statements,
bytecode verifier

Hiroshi Yamauchi Purdue summer 2005 initial compiler back-
end for AMD64

172 Chapter 7. Table of Contents

https://github.com/gilles-duboscq
https://github.com/lukasstadler

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

173

	Project Overview
	Citation
	Getting Started
	Features
	Roadmap
	Acknowledgements
	Table of Contents
	Status
	Build and Usage Instructions
	Developing Maxine on IDEs
	Debugging
	The Maxine Project: Frequently Asked Questions
	Glossary of Maxine terminology and concepts
	Actors
	JDK interoperation
	VM Boot Image
	Meta-circularity and memory management
	Maxine’s current Generational GC
	Maxine’s semi-space GC
	Next generation GC in Maxine
	Management of Code Dependencies
	Code Eviction in the Maxine VM
	Object representation in the Maxine VM
	Schemes: Interfaces for Maxine VM Configuration
	Snippets in the Maxine VM
	Stack Walking in the Maxine VM
	Threads in the Maxine VM
	Type-based Logging
	Virtual Machine Level Analysis
	VM Operations
	VMTI
	JVMTI
	JJVMTI
	The Maxine Inspector
	How the Inspector interacts with the Maxine VM
	Papers and Presentations
	The Maxine Project: Contributors

	Indices and tables

